Applied Microbiology and Biotechnology

, Volume 103, Issue 17, pp 7085–7095 | Cite as

MiR-106b promotes therapeutic antibody expression in CHO cells by targeting deubiquitinase CYLD

  • Changzhi Xu
  • Qianqian Han
  • Qin Zhou
  • Lanlan Zhang
  • Pengfei Wu
  • Yafang Lu
  • Yan Si
  • Tengfei Ma
  • Bingbing Ma
  • Buchang ZhangEmail author
Applied genetics and molecular biotechnology


MicroRNAs (miRNAs) function as important regulators of major cellular processes, such as cell cycle, proliferation, development, and apoptosis. Recently, miRNA engineering of Chinese hamster ovary (CHO) cells has emerged as a promising strategy for enhancing therapeutic antibody production. Previously, we have reported that inhibition of deubiquitinase cylindromatosis (CYLD) remarkably enhanced the therapeutic antibody production in CHO cells. However, the mechanisms regulating CYLD in CHO cells remain elusive. Herein, we demonstrated that miR-106b targets CYLD directly, as shown by a series of bioinformatics analyses and experimental assays. Stable overexpression of miR-106b in CHO cells promoted CHO cell viability and subsequent antibody expression in transient transfection assay. Furthermore, the results in fed-batch culture showed that stable overexpression of miR-106b in a CHO-IgG cell line achieved about 0.66-fold promotion in product titer compared to the parental cells. Meanwhile, overexpression of miR-106b did not affect the quality of antibody. Taken together, our findings highlight the effect of miR-106b inhibition in CYLD synthesis and its function in antibody expression as a new target for improving CHO manufacturing cells.


miR-106b CYLD CHO cells Therapeutic antibody Cell engineering 


Funding information

This work was supported by the National Natural Science Foundation of China (Grants 31600749), the Initial Foundation of Doctoral Scientific Research in Anhui University (Y01001487), the Key Research and Development Projects in Anhui Province (1704a07020075), and the project in Biotechnical Research Centre for Anhui Tianxiang Cereals, Oils and Food stuffs Co., Ltd., Anhui University (Y06159202).

Compliance with ethical standards

Competing interests

The authors declare that they have no conflicts of interest.

Ethical standards

This study does not involve any human participants or animals.

Supplementary material

253_2019_10000_MOESM1_ESM.pdf (118 kb)
ESM 1 (PDF 117 kb)


  1. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. CrossRefGoogle Scholar
  2. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76–83. CrossRefGoogle Scholar
  3. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110 doi:
  4. Druz A, Son YJ, Betenbaugh M, Shiloach J (2013) Stable inhibition of mmu-miR-466h-5p improves apoptosis resistance and protein production in CHO cells. Metab Eng 16:87–94. CrossRefGoogle Scholar
  5. Espinosa L, Cathelin S, D'Altri T, Trimarchi T, Statnikov A, Guiu J, Rodilla V, Ingles-Esteve J, Nomdedeu J, Bellosillo B, Besses C, Abdel-Wahab O, Kucine N, Sun SC, Song G, Mullighan CC, Levine RL, Rajewsky K, Aifantis I, Bigas A (2010) The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell 18(3):268–281. CrossRefGoogle Scholar
  6. Fei SJ, Zhang XC, Dong S, Cheng H, Zhang YF, Huang L, Zhou HY, Xie Z, Chen ZH, Wu YL (2013) Targeting mTOR to overcome epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small cell lung cancer cells. PLoS One 8(7):e69104. CrossRefGoogle Scholar
  7. Fischer S, Marquart KF, Pieper LA, Fieder J, Gamer M, Gorr I, Schulz P, Bradl H (2017) miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development. Biotechnol Bioeng 114(7):1495–1510. CrossRefGoogle Scholar
  8. Fischer S, Paul AJ, Wagner A, Mathias S, Geiss M, Schandock F, Domnowski M, Zimmermann J, Handrick R, Hesse F, Otte K (2015) miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol Bioeng 112(10):2142–2153. CrossRefGoogle Scholar
  9. Hammond S, Swanberg JC, Polson SW, Lee KH (2012) Profiling conserved microRNA expression in recombinant CHO cell lines using Illumina sequencing. Biotechnol Bioeng 109(6):1371–1375. CrossRefGoogle Scholar
  10. Hammond SM (2006) RNAi, microRNAs, and human disease. Cancer Chemother Pharmacol 58(Suppl 1):s63–s68. CrossRefGoogle Scholar
  11. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39(4):493–506. CrossRefGoogle Scholar
  12. Jadhav V, Hackl M, Klanert G, Hernandez Bort JA, Kunert R, Grillari J, Borth N (2014) Stable overexpression of miR-17 enhances recombinant protein production of CHO cells. J Biotechnol 175:38–44. CrossRefGoogle Scholar
  13. Jono H, Lim JH, Chen LF, Xu H, Trompouki E, Pan ZK, Mosialos G, Li JD (2004) NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB: evidence for a novel inducible autoregulatory feedback pathway. J Biol Chem 279(35):36171–36174. CrossRefGoogle Scholar
  14. Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y (2009) Cancer metastasis is accelerated through immunosuppression during snail-induced EMT of cancer cells. Cancer Cell 15(3):195–206. CrossRefGoogle Scholar
  15. Li BS, Zuo QF, Zhao YL, Xiao B, Zhuang Y, Mao XH, Wu C, Yang SM, Zeng H, Zou QM, Guo G (2015) MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene 34(20):2556–2565. CrossRefGoogle Scholar
  16. Li X, Yang L, Chen LL (2018) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71(3):428–442. CrossRefGoogle Scholar
  17. Liu F, Gong J, Huang W, Wang Z, Wang M, Yang J, Wu C, Wu Z, Han B (2014) MicroRNA-106b-5p boosts glioma tumorigensis by targeting multiple tumor suppressor genes. Oncogene 33(40):4813–4822. CrossRefGoogle Scholar
  18. Loh WP, Loo B, Zhou L, Zhang P, Lee DY, Yang Y, Lam KP (2014) Overexpression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells. Biotechnol J 9(9):1140–1151. CrossRefGoogle Scholar
  19. Lu Y, Zhou Q, Han Q, Wu P, Zhang L, Zhu L, Weaver DT, Xu C, Zhang B (2018) Inactivation of deubiquitinase CYLD enhances therapeutic antibody production in Chinese hamster ovary cells. Appl Microbiol Biotechnol 102(14):6081–6093. CrossRefGoogle Scholar
  20. Massoumi R, Kuphal S, Hellerbrand C, Haas B, Wild P, Spruss T, Pfeifer A, Fassler R, Bosserhoff AK (2009) Down-regulation of CYLD expression by snail promotes tumor progression in malignant melanoma. J Exp Med 206(1):221–232. CrossRefGoogle Scholar
  21. Mehlich D, Garbicz F, Wlodarski PK (2018) The emerging roles of the polycistronic miR-106b approximately 25 cluster in cancer—a comprehensive review. Biomed Pharmacother 107:1183–1195. CrossRefGoogle Scholar
  22. Ni F, Zhao H, Cui H, Wu Z, Chen L, Hu Z, Guo C, Liu Y, Chen Z, Wang X, Chen D, Wei H, Wang S (2015) MicroRNA-362-5p promotes tumor growth and metastasis by targeting CYLD in hepatocellular carcinoma. Cancer Lett 356(2 Pt B):809–818. CrossRefGoogle Scholar
  23. Ni T, Li XY, Lu N, An T, Liu ZP, Fu R, Lv WC, Zhang YW, Xu XJ, Grant Rowe R, Lin YS, Scherer A, Feinberg T, Zheng XQ, Chen BA, Liu XS, Guo QL, Wu ZQ, Weiss SJ (2016) Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol 18(11):1221–1232. CrossRefGoogle Scholar
  24. Raab N, Mathias S, Alt K, Handrick R, Fischer S, Schmieder V, Jadhav V, Borth N, Otte K (2019) CRISPR/Cas9-mediated knockout of microRNA-744 improves antibody titer of CHO production cell lines. Biotechnol J 14:e1800477. CrossRefGoogle Scholar
  25. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517. CrossRefGoogle Scholar
  26. Samal J, Kandpal M, Vivekanandan P (2017) HBeAg-induced miR-106b promotes cell growth by targeting the retinoblastoma gene. Sci Rep 7(1):14371. CrossRefGoogle Scholar
  27. Sanchez N, Kelly P, Gallagher C, Lao NT, Clarke C, Clynes M, Barron N (2014) CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. Biotechnol J 9(3):396–404. CrossRefGoogle Scholar
  28. Scaria V, Jadhav V (2007) microRNAs in viral oncogenesis. Retrovirology 4:82. CrossRefGoogle Scholar
  29. Simon NE, Schwacha A (2014) The Mcm2-7 replicative helicase: a promising chemotherapeutic target. Biomed Res Int 2014:549719. CrossRefGoogle Scholar
  30. Song L, Lin C, Gong H, Wang C, Liu L, Wu J, Tao S, Hu B, Cheng SY, Li M, Li J (2013) miR-486 sustains NF-kappaB activity by disrupting multiple NF-kappaB-negative feedback loops. Cell Res 23(2):274–289. CrossRefGoogle Scholar
  31. Wu MZ, Cheng WC, Chen SF, Nieh S, O'Connor C, Liu CL, Tsai WW, Wu CJ, Martin L, Lin YS, Wu KJ, Lu LF, Izpisua Belmonte JC (2017) miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol 19(10):1286–1296. CrossRefGoogle Scholar
  32. Xu C, He X, Zheng Z, Zhang Z, Wei C, Guan K, Hou L, Zhang B, Zhu L, Cao Y, Zhang Y, Cao Y, Ma S, Wang P, Zhang P, Xu Q, Ling Y, Yang X, Zhong H (2014) Downregulation of microRNA miR-526a by enterovirus inhibits RIG-I-dependent innate immune response. J Virol 88(19):11356–11368. CrossRefGoogle Scholar
  33. Xu DD, Zhou PJ, Wang Y, Zhang L, Fu WY, Ruan BB, Xu HP, Hu CZ, Tian L, Qin JH, Wang S, Wang X, Li YC, Liu QY, Ren Z, Zhang R, Wang YF (2016) Reciprocal activation between STAT3 and miR-181b regulates the proliferation of esophageal cancer stem-like cells via the CYLD pathway. Mol Cancer 15(1):40. CrossRefGoogle Scholar
  34. Ye H, Liu X, Lv M, Wu Y, Kuang S, Gong J, Yuan P, Zhong Z, Li Q, Jia H, Sun J, Chen Z, Guo AY (2012) MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia. Nucleic Acids Res 40(12):5201–5214. CrossRefGoogle Scholar
  35. Zheng L, Zhang Y, Liu Y, Zhou M, Lu Y, Yuan L, Zhang C, Hong M, Wang S, Li X (2015) MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med 13:252. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Changzhi Xu
    • 1
  • Qianqian Han
    • 1
  • Qin Zhou
    • 1
  • Lanlan Zhang
    • 1
  • Pengfei Wu
    • 1
  • Yafang Lu
    • 1
  • Yan Si
    • 1
  • Tengfei Ma
    • 2
  • Bingbing Ma
    • 2
  • Buchang Zhang
    • 1
    Email author
  1. 1.Institutes of Physical Science and Information TechnologyAnhui UniversityHefeiPeople’s Republic of China
  2. 2.Biotechnical Research Centre for Anhui Tianxiang Cereals, Oils and Food stuffs Co., LtdAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations