Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 17, pp 7111–7128 | Cite as

Genome sequence of Isaria javanica and comparative genome analysis insights into family S53 peptidase evolution in fungal entomopathogens

  • Runmao Lin
  • Xi Zhang
  • Bei Xin
  • Manling Zou
  • Yaoyao Gao
  • Feifei Qin
  • Qiongbo Hu
  • Bingyan XieEmail author
  • Xinyue ChengEmail author
Genomics, transcriptomics, proteomics

Abstract

The fungus Isaria javanica is an important entomopathogen that parasitizes various insects and is effective for pest control. In this study, we sequenced and assembled the genomes (IJ1G and IJ2G) of two I. javanica strains isolated from different insects. The genomes were approximately 35 Mb in size with 11,441 and 11,143 protein-coding genes, respectively. Using a phylogenomic approach, we evaluated genome evolution across five entomopathogenic fungi in Cordycipitaceae. By comparative genome analysis, it was found that family S53 serine peptidases were expanded in Cordycipitaceae entomopathogens, particularly in I. javanica. Gene duplication events were identified based on phylogenetic relationships inferred from 82 S53 peptidases within six entomopathogenic fungal genomes. Moreover, we found that carbohydrate-active enzymes and proteinases were the largest secretory protein groups encoded in the I. javanica genome, especially chitinases (GH18), serine and aspartic peptidases (S53, S08, S10, A01). Pathogenesis-related genes and genes for bacterial-like toxins and secondary metabolites were also identified. By comparative transcriptome analysis, differentially expressed genes in response to insect nutrients (in vitro) were identified. Moreover, most S53 peptidases were detected to be significantly upregulated during the initial fungal infection process in insects (in vivo) by RT-qPCR. Our results provide new clues about understanding evolution of pathogenic proteases and may suggest that abundant S53 peptidases in the I. javanica genome may contribute to its effective parasitism on various insects.

Keywords

Isaria javanica Entomopathogen Serine peptidase S53 family Gene family expansion Gene duplication Genome evolution 

Notes

Authors’ contributions

L.R. assembled and annotated the genomic and transcriptomic data. L.R. and X.C. analysed the genomic data. X.Z. and M.Z. performed RT-qPCR. B. Xin and F.Q. prepared fungal materials, and Y.G. prepared insect materials. Q.H. provided the fungal strains. X. C, R.L. and X.Z. wrote the manuscript. B. Xie and X.C. designed the research and revised the manuscript.

Funding

The research was financially supported by the National Key Research and Development (R&D) Plan of China (2018YFD0200802, 2016YFC1201100).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical statements

This paper is an original work. It has not been submitted elsewhere and under consideration in any other Journal. It does not contain any studies with human participants or vertebrates performed by any of the authors.

Supplementary material

253_2019_9997_MOESM1_ESM.pdf (731 kb)
ESM 1 (PDF 731 kb)
253_2019_9997_MOESM2_ESM.xls (7 mb)
ESM 2 (XLS 7182 kb)

References

  1. Bagga S, Hu G, Screen SE, St. Leger RJ (2004) Reconstruction the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324:159–169CrossRefGoogle Scholar
  2. Cabanillas HE, Jones WA (2009) Effects of temperature and culture media on vegetative growth of an entomopathogenic fungus Isaria sp. (Hypocreales: Clavicipitaceae) naturally affecting the whitefly, Bemisia tabaci in Texas. Mycopathologia 167:263–271CrossRefGoogle Scholar
  3. Caracuel Z, Roncero MIG, Espeso EA, Gonzalez-Verdejo CI, Garcia-Maceira FI, Pietro AD (2003) The pH response transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol Microbiol 48:765–779CrossRefGoogle Scholar
  4. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefGoogle Scholar
  5. Chan Y-L, Cai D, Taylor PWJ, Chan M-T, Yeh KW (2010) Adverse effect of the chitinolytic enzyme PjCHI-1 in transgenic tomato on egg mass production and embryonic development of Meloidogyne incognita. Plant Pathol 59:922–930CrossRefGoogle Scholar
  6. Chen CC, Kumar HGA, Kumar S, TZean SS, Yeh KW (2007) Molecular cloning, characterization, and expression of a chitinase from the entomopathogenic fungus Paecilomyces javanicus. Curr Microbiol 55:8–13CrossRefGoogle Scholar
  7. Chen M, Zhang D, Peng F, Li Z (2014) Wettable powder development of Isaria javanica for control of the lesser green leafhopper, Empoasca vitis. Chin J Biol Control 30:51–57Google Scholar
  8. Chen A, Wang Y, Shao Y, Zhou Q, Chen S, Wu Y, Liu E (2018) Genes involved in Beauveria bassiana infection to Galleria mellonella. Arch Microbiol 200:541–552CrossRefGoogle Scholar
  9. Cheng X, Gao Y, Yang C, Zhang X, Qin F, Lu J, Gao Y, Xu R (2018) Potential of entomopathogenic fungus Isaria javanica for controlling the potato tuberworm Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Isr J Entomol 48:197–208Google Scholar
  10. Clarkson JM, Charnley AK (1996) New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 4:197–203CrossRefGoogle Scholar
  11. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefGoogle Scholar
  12. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165CrossRefGoogle Scholar
  13. De Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I, Merrow M, Brachmann A, Hughes DP (2015) Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics 16:620CrossRefGoogle Scholar
  14. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  15. Edgar RC, Myers EW (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21:152–158CrossRefGoogle Scholar
  16. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016CrossRefGoogle Scholar
  17. Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y, Feng J, Yang X, Zhang Y, Pei Y (2005) Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 71:363–370CrossRefGoogle Scholar
  18. Freimoser FM, Screen S, Bagga S, Hu G, St. Leger RJ (2003) Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149:239–247CrossRefGoogle Scholar
  19. Gallou A, Serna-Domínguez MG, Berlanga-Padilla AM, Ayala-Zermeño MA, Mellín-Rosas MA, Montesinos-Matías R, Arredondo-Bernal HC (2016) Species clarification of Isaria isolates used as biocontrol agents against Diaphorina citri (Hemiptera: Liviidae) in Mexico. Fungal Biol 120:414–423CrossRefGoogle Scholar
  20. Gibson DM, Donzelli BG, Krasnoff SB, Keyhani NO (2014) Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat Prod Rep 31:1287–1305CrossRefGoogle Scholar
  21. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TR, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108:1513–1518CrossRefGoogle Scholar
  22. Goettel MS, St. Leger RJ, Rizzo NW, Staples RC, Roberts DW (1989) Ultrastructural localization of a cuticle-degrading protease produced by the entomopathogenic fungus Metarhizium anisopliae during penetration of host (Manduca sexta) cuticle. J Gen Microbiol 134:2233–2239Google Scholar
  23. Han MV, Thomas GW, Lugo-Martinez J, Hahn MW (2013) Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 30:1987–1997CrossRefGoogle Scholar
  24. Hasan WA, Assaf LH, Abdullah SK (2012) Occurrence of entomopathogenic and other opportunistic fungi in soil collected from insect hibernation sites and evaluation for their entomopathogenic potential. Bull Iraq Nat Hist Mus 12:19–27Google Scholar
  25. Hiller K, Grote A, Scheer M, Münch R, Jahn D (2004) PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res 32:W375–W379CrossRefGoogle Scholar
  26. Hu Q-B, Ren S-X, An X-C, Qian M-H (2007) Insecticidal activity influence of destruxins on the pathogenicity of Paecilomyces javanicus against Spodoptera litura. J Appl Entomol 131:262–268CrossRefGoogle Scholar
  27. Hu Q, Liu S, Yin F, Cai S, Zhong G, Ren S (2011) Diversity and virulence of soil-dwelling fungi Isaria spp. and Paecilomyces spp. against Solenopsis invicta (Hymenoptera: Formicidae). Biocontrol Sci Tech 21:225–234CrossRefGoogle Scholar
  28. Hu X, Xiao G, Zheng P, Shang Y, Su Y, Zhang X, Liu X, Zhan S, St. Leger RJ, Wang C (2014) Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Natl Acad Sci U S A 111:16796–16801CrossRefGoogle Scholar
  29. Huang Z, Hao Y, Gao T, Huang Y, Ren S, Keyhani NO (2016) The Ifchit1 chitinase gene acts as a critical virulence factor in the insect pathogenic fungus Isaria fumosorosea. Appl Microbiol Biotechnol 100:5491–5503CrossRefGoogle Scholar
  30. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467CrossRefGoogle Scholar
  31. Kail L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036CrossRefGoogle Scholar
  32. Kang BR, Han JH, Kim JJ, Kim YC (2018) Dual biocontrol potential of the entomopathogenic fungus, Isaria javanica, for both aphids and plant fungal pathogens. Mycobiology 46:440–447CrossRefGoogle Scholar
  33. Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov S, Nikolskaya AN, Rao BS, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7CrossRefGoogle Scholar
  34. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefGoogle Scholar
  35. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRefGoogle Scholar
  36. Landraud P, Chuzeville S, Billon-Grande G, Poussereau N, Bruel C (2013) Adaptation to pH and role of PacC in the rice blast fungus Magnaporthe oryzae. PLoS One 8:e69236CrossRefGoogle Scholar
  37. Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189CrossRefGoogle Scholar
  38. Li J, Yu L, Yang J, Dong L, Tian B, Yu Z, Liang L, Zhang Y, Wang X, Zhang K (2010) New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evol Biol 10:68CrossRefGoogle Scholar
  39. Lin R, Qin F, Shen B, Shi Q, Liu C, Zhang X, Jiao Y, Lu J, Gao Y, Suarez-Fernandez M, Lopez-Moya F, Lopez-Llorca LV, Wang G, Mao Z, Ling J, Yang Y, Cheng X, Xie B (2018) Genome and secretome analysis of Pochonia chlamydosporia provide new insight into egg-parasitic mechanisms. Sci Rep 8:1123CrossRefGoogle Scholar
  40. Lopes RS, Svedese VM, Portela APAS, Albuquerque AC, Luna-Alves Lima EA (2011) Virulence and biological aspects of Isaria javanica (Frieder & Bally) Samson & Hywel-Jones in Coptotermes gestroi (Washmann) (Isoptera: Rhinotermitidae). Arq Inst Biol (São Paulo) 78:565–572Google Scholar
  41. Luangsa-Ard JJ, Hywel-Jones NL, Manoch L, Samson RA (2005) On the relationships of Paecilomyces sect Isarioidea species. Mycol Res 109:581–589CrossRefGoogle Scholar
  42. Luangsa-Ard J, Berkaew P, Ridkaew R, Hywell-Jones N, Isaka M (2009) A beauvericin hot spot in the genus Isaria. Mycol Res 113:1389–1395CrossRefGoogle Scholar
  43. Mitreva M, Jasmer DP, Zarlenga DS, Wang Z, Abubucker S, Martin J, Taylor CM, Yin Y, Fulton L, Minx P, Yang S-P, Warren WC, Fulton RS, Bhonagiri V, Zhang X, Hallsworth-Pepin K, Clifton SW, McCarter JP, Appleton J, Mardis ER, Wilson RK (2011) The draft genome of the parasitic nematode Trichinella spiralis. Nat Genet 43:228–235CrossRefGoogle Scholar
  44. Molnar I, Gibson DM, Krasnoff SB (2010) Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat Prod Rep 27:1233–1372CrossRefGoogle Scholar
  45. Muszewska A, Taylor JW, Szczesny P, Grynberg M (2011) Independent subtilases expansions in fungi associated with animals. Mol Biol Evol 28:3395–3404CrossRefGoogle Scholar
  46. Ortiz-Urquiza A, Keyhani NO (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4:357–374CrossRefGoogle Scholar
  47. Ortiz-Urquiza A, Keyhani NO (2016) Molecular genetics of Beauveria bassiana infection of insects. Adv Genet 94:165–249CrossRefGoogle Scholar
  48. Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC (2010) CAZymes analysis toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 20:1574–1584CrossRefGoogle Scholar
  49. Park SE, Kim JC, Lee SJ, Lee MR, Kim S, Li D, Baek S, Han JH, Kim JJ, Koo KB, Shin TY, Kim JS (2018) Solid cultures of thrips-pathogenic fungi Isaria javanica strains for enhanced conidial productivity and thermotolerance. J Asia Pac Entomol 21(4):1102–1109CrossRefGoogle Scholar
  50. Pedersen AG, Nielsen H (1997) Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proc Int Conf Intell Syst Mol Biol 5:226–233Google Scholar
  51. Peng Y, Leung HC, Yiu SM, Lv MJ, Zhu XG, Chin FY (2013) IDBA-Tran: a more robust de novo de Bruijn graph assembler for transcriptomes with uneven expression levels. Bioinformatics 29:i326–i334CrossRefGoogle Scholar
  52. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefGoogle Scholar
  53. Prasad P, Varshney D, Adholeya A (2015) Whole genome annotation and comparative genomic analyses of bio-control fungus Purpureocillium lilacinum. BMC Genomics 16:1004CrossRefGoogle Scholar
  54. Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21:351–358CrossRefGoogle Scholar
  55. Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42:D503–D509CrossRefGoogle Scholar
  56. Reichard U, Lechenne B, Asif AR, Streit F, Grouzmann E, Jousson O, Monod M (2006) Sedolisins, a new class of secreted proteases from Aspergillus fumigates with endoprotease or tripeptidyl-peptidase activity at acidic pHs. Appl Environ Microbiol 72:1739–1748CrossRefGoogle Scholar
  57. Samson RA (1974) Paecilomyces and some allied hyphomycetes. Stud Mycol 6:116Google Scholar
  58. Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302CrossRefGoogle Scholar
  59. Schiex T, Moisan A, Rouze P (2001) EuGene: an eukaryotic gene finder that combines several sources of evidence. Lect. Notes Comput Sci 2066:111–125CrossRefGoogle Scholar
  60. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504CrossRefGoogle Scholar
  61. Scorsetti AC, Humber RA, De Gregorio C, López Lastra CC (2008) New records of entomopathogenic fungi infecting Bemisia tabaci and Trialeurodes vaporariorum, pests of horticultural crops, in Argentina. BioControl 53:787–796CrossRefGoogle Scholar
  62. Selvig K, Alspaugh JA (2011) pH response pathways in Fungi: adapting to host-derived and environmental signals. Mycobiology 39:249–256CrossRefGoogle Scholar
  63. Semenova TA, Belozerskii MA, Belyakova GA, Borisov BA, Semenova SA, Dunaevskii YE (2011) Secreted protease of the entomopathogenic fungus Cordyceps militaris. II Enzyme properties and adsorption on the insect cuticle. Microbiology 80:889–892CrossRefGoogle Scholar
  64. Shang Y, Xiao G, Zheng P, Cen K, Zhan S, Wang C (2016) Divergent and convergent evolution of fungal pathogenicity. Genome Biol Evol 8:1374–1387CrossRefGoogle Scholar
  65. Shimazu M, Takatsuka J (2010) Isaria javanica (anamorphic Cordycipitaceae) isolated from gypsy moth larvae, Lymantria dispar (Lepidoptera: Lymantriidae), in Japan. Appl Entomol Zool 45:497–504CrossRefGoogle Scholar
  66. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212CrossRefGoogle Scholar
  67. Specht A, Azeredo JL, Lima E, Boldo JT, Martinus MK, Lorini LM, Barros NM (2009) Occurrence of the entomopathogenic fungus Isaria javanica (Frieder. & Bally) Samson & Hywell-Jones (Fungi, Sordariomycetes) infecting Lonomia oblique Walker (Lepidoptera, Saturniidae, Hemileucinae). Rev Bras Entomol 53:493–494CrossRefGoogle Scholar
  68. St. Leger RJ (1995) The role of cuticle-degrading proteases in fungal pathogenesis of insects. Can J Bot 73:S1119–S1125CrossRefGoogle Scholar
  69. St. Leger RJ, Cooper RM, Charnley AK (1987) Production of cuticle-degrading enzymes by the entomopathogen Metarhizium anisopliae during infection of cuticles from Calliphora vomitoria and Manduca sexta. J Gen Microbiol 133:1371–1382Google Scholar
  70. Staats CC, Junges A, Guedes RLM, Thompson CE, de Morais GL, Boldo JT, Almeida LGP, Andreis FC, Gerber AL, Sbaraini N, Paixao RL, Broetto L, Landell M, Santi L, Beys-da-Silva WO (2014) Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics 15:822CrossRefGoogle Scholar
  71. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:435–439CrossRefGoogle Scholar
  72. Tartar A, Boucias DG (2004) A pilot-scale expressed sequence tag analysis of Beauveria bassiana gene expression reveals a tripeptidyl peptidase that is differentially expressed in vivo. Mycopathologia 158:201–209CrossRefGoogle Scholar
  73. Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M (2008) Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18:1979–1990CrossRefGoogle Scholar
  74. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111CrossRefGoogle Scholar
  75. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515CrossRefGoogle Scholar
  76. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and cufflinks. Nat Protoc 7:562–578CrossRefGoogle Scholar
  77. Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack K (2015) The pathogen-host interactions database: additions and future developments. Nucleic Acids Res 43:D645–D655CrossRefGoogle Scholar
  78. Valero-Jiménez CA, Wiegers H, Zwaan BJ, Koenraadt CJ, van Kan JA (2016) Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 133:41–49CrossRefGoogle Scholar
  79. Wang C, Wang S (2017) Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol 62:73–90CrossRefGoogle Scholar
  80. Wang G, Liu Z, Lin R, Li E, Mao Z, Ling J, Yang Y, Yin WB, Xie B (2016a) Biosynthesis of antibiotic Leucinostatins in bio-control fungus Purpureocillium lilacinum and their inhibition on Phytophthora revealed by genome mining. PLoS Pathog 12:e1005685CrossRefGoogle Scholar
  81. Wang JB, St Leger RJ, Wang C (2016b) Advances in genomics of entomopathogenic fungi. Adv Genet 94:67–105CrossRefGoogle Scholar
  82. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243CrossRefGoogle Scholar
  83. Wu Y, Yin X, Xu L, Feng H, Huang L (2018) VmPacC is required for acidification and virulence in Valsa mali. Front Microbiol 9:1981CrossRefGoogle Scholar
  84. Wyatt GR, Loughheed TC, Wyatt SS (1956) The chemistry of insect hemolymph. J Gen Physiol 39:853–868CrossRefGoogle Scholar
  85. Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, Shang Y, St. Leger RJ, Zhao GP, Wang C, Feng MG (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483CrossRefGoogle Scholar
  86. Xie L, Han JH, Kim JJ, Lee SY (2016) Effects of culture conditions on conidial production of the sweet potato whitefly pathogenic fungus Isaria javanica. Mycoscience 57:64–70CrossRefGoogle Scholar
  87. Zhang T, Sun X, Xu Q, Candelas LG, Li H (2013) The pH signaling transcription factor PacC is required for full virulence in Penicillium digitatum. Appl Microbiol Biotechnol 97:9087–9098CrossRefGoogle Scholar
  88. Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P (2013) The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat Commun 4:1424CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Life SciencesBeijing Normal UniversityBeijingChina
  2. 2.Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
  3. 3.South China Agricultural UniversityGuangzhouChina
  4. 4.Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringBeijingChina

Personalised recommendations