Applied Microbiology and Biotechnology

, Volume 103, Issue 14, pp 5797–5809 | Cite as

Complete mitogenome of the entomopathogenic fungus Sporothrix insectorum RCEF 264 and comparative mitogenomics in Ophiostomatales

  • Shu ZhangEmail author
  • Yong-Jie ZhangEmail author
  • Zhi-Liang Li
Genomics, transcriptomics, proteomics


The fungal order Ophiostomatales contains numerous species important in medical fields, agriculture, and forestry, and several species have had available mitogenome information. The nuclear genome of the entomopathogenic fungus Sporothrix insectorum has been reported, while its mitogenome remains unknown. Herein, we firstly described the mitogenome of S. insectorum RCEF 264 and then compared Ophiostomatales mitogenomes from both interspecific and intraspecific perspectives. The mitogenome of S. insectorum RCEF 264 was 31,454 bp in length, containing typical fungal mitochondrial genes plus rnpB. Four group I introns interrupted rnl and cox1. Phylogenetic analyses confirmed the placement of S. insectorum RCEF 264 in Ophiostomatales. Comparison of mitogenomes among seven Ophiostomatales species revealed conserved gene contents and a high synteny, although there were also some differences among them. Their mitogenomes showed more than two-fold variations (26.6–65.1 kb) in size, with a total of 37 intron insertional loci from 11 genes (1–25 introns per species). The sole intron shared by all species was an rps3-encoding intron in rnl (mL2450), and this intron-based phylogeny was highly consistent with those constructed using mitochondrial/nuclear genes, suggesting convergent evolution of this intron with Ophiostomatales species. The dendrogram based on presence/absence patterns at all intron loci was quite different from those based on mitochondrial/nuclear genes. Comparison of mitogenomes among two to three intraspecific individuals in Ophiostoma novo-ulmi subsp. novo-ulmi and Sporothrix schenckii revealed mitogenome size variations due to single-nucleotide polymorphisms (SNPs) and indels but without fluctuation of intron numbers for each species. This study greatly enhanced our understanding of mitogenome evolution in Ophiostomatales.


Sporothrix insectorum Ophiostomatales Mitogenome Intron Phylogeny Evolution Comparative mitogenomics 



The authors thank Prof. Cheng-Shu Wang at Institute of Plant Physiology and Ecology, Chinese Academy of Sciences for providing the S. insectorum strain. We also thank Mr. Ning-Bo Cui for helping amplify R1295_mt and R1295_nr.

Funding information

This study was funded by the National Natural Science Foundation of China (31872162), the Natural Science Foundation of Shanxi Province (201601D011065), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, the Research Project Supported by Shanxi Scholarship Council of China (2017-015), Hundred Talents Program of Shanxi Province, and the Special Fund for Large Scientific Instruments and Equipment in Shanxi Province.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_9855_MOESM1_ESM.pdf (576 kb)
ESM 1 (PDF 575 kb)
253_2019_9855_MOESM2_ESM.xlsx (60 kb)
ESM 2 (XLSX 59 kb)


  1. Abboud TG, Zubaer A, Wai A, Hausner G (2018) The complete mitochondrial genome of the Dutch elm disease fungus Ophiostoma novo-ulmi subsp. novo-ulmi. Can J Microbiol 64(5):339–348CrossRefPubMedGoogle Scholar
  2. Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, Gabaldon T (2014) High variability of mitochondrial gene order among fungi. Genome Biol Evol 6(2):451–465CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Search Tool. J Mol Biol 215(3):403–410CrossRefGoogle Scholar
  4. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580CrossRefPubMedPubMedCentralGoogle Scholar
  5. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5(6):e11147CrossRefPubMedPubMedCentralGoogle Scholar
  6. David-Henriet-Ordonez-Giraldo AI (1993) Sporothrix insectorum and the biologic control of the lace bug Leptopharsa gibbicarina in the oil palm plantations of Southern America (Hemiptera, Tingidae). B Soc Entomol Fr 98(1):77–85Google Scholar
  7. de Beer ZW, Duong TA, Wingfield MJ (2016) The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship. Stud Mycol 83:165–191CrossRefPubMedPubMedCentralGoogle Scholar
  8. de Hoog GS (1974) The genera Blastobotrys, Sporothrix, Calcarisporium and Calcarisporiella gen. nov. Stud Mycol 7:1–84Google Scholar
  9. Ellenberger S, Burmester A, Wöstemeyer J (2018) The fate of mitochondria after infection of the mucoralean fungus Absidia glauca by the fusion parasite Parasitella parasitica: comparison of mitochondrial genomes in zygomycetes. Mitochondr DNA A 29(1):113–120CrossRefGoogle Scholar
  10. Fan WW, Zhang S, Zhang YJ (2019) The complete mitochondrial genome of the Chan-hua fungus Isaria cicadae: a tale of intron evolution in Cordycipitaceae. Environ Microbiol 21(2):864–879CrossRefPubMedGoogle Scholar
  11. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21(3):487–493CrossRefPubMedPubMedCentralGoogle Scholar
  12. Korovesi AG, Ntertilis M, Kouvelis VN (2018) Mt-rps3 is an ancient gene which provides insight into the evolution of fungal mitochondrial genomes. Mol Phylogenet Evol 127:74–86CrossRefPubMedGoogle Scholar
  13. Lang BF (2018) Mitochondrial genomes in fungi. In: Wells RD, Bond JS, Klinman J, Masters BSS (eds) Molecular life sciences. Springer, New York, NY, pp 722–728CrossRefGoogle Scholar
  14. Li ZZ, Huang B, Li CR, Fan MZ (2000) Molecular evidence for anamorph determination of Cordyceps sinensis (Berk.) Sacc. I. Relation between Hirsutella sinensis and C. sinensis. Mycosystema 19(1):60–64Google Scholar
  15. Li ZZ, Alves SB, Roberts DW, Fan MZ, Delalibera I, Tang J, Lopes RB, Faria M, Rangel DEN (2010) Biological control of insects in Brazil and China: history, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Sci Tech 20(2):117–136CrossRefGoogle Scholar
  16. Luz C, Bastos Netto MC, Nunes Rocha LF (2007) In vitro susceptibility to fungicides by invertebrate-pathogenic and saprobic fungi. Mycopathologia 164(1):39–47CrossRefPubMedGoogle Scholar
  17. Nie Y, Wang L, Cai Y, Tao W, Zhang YJ, Huang B (2019) Mitochondrial genome of the entomophthoroid fungus Conidiobolus heterosporus provides insights into evolution of basal fungi. Appl Microbiol Biotechnol 103(9):1379–1391CrossRefPubMedGoogle Scholar
  18. Oliveira-Filho EC, Freitas Muniz DH, Freire IS, Ramos FR, Alves RT, Jonsson CM, Grisolia CK, Monnerat RG (2011) Susceptibility of non-target invertebrates to Brazilian microbial pest control agents. Ecotoxicology 20(6):1354–1360CrossRefPubMedGoogle Scholar
  19. Sandor S, Zhang YJ, Xu JP (2018) Fungal mitochondrial genomes and genetic polymorphisms. Appl Microbiol Biotechnol 102:9433–9448CrossRefPubMedGoogle Scholar
  20. Seif E, Leigh J, Liu Y, Roewer I, Forget L, Lang BF (2005) Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms. Nucleic Acids Res 33(2):734–744CrossRefPubMedPubMedCentralGoogle Scholar
  21. Seif ER (2003) Mitochondrial RNase P RNAs in ascomycete fungi: lineage-specific variations in RNA secondary structure. RNA 9(9):1073–1083CrossRefPubMedPubMedCentralGoogle Scholar
  22. Shang YF, Xiao GH, Zheng P, Cen K, Zhan S, Wang CS (2016) Divergent and convergent evolution of fungal pathogenicity. Genome Biol Evol 8(5):1374–1387CrossRefPubMedPubMedCentralGoogle Scholar
  23. Teixeira MM, de Almeida LG, Kubitschek-Barreira P, Alves FL, Kioshima ES, Abadio AK, Fernandes L, Derengowski LS, Ferreira KS, Souza RC, Ruiz JC, de Andrade NC, Paes HC, Nicola AM, Albuquerque P, Gerber AL, Martins VP, Peconick LD, Neto AV, Chaucanez CB, Silva PA, Cunha OL, de Oliveira FF, dos Santos TC, Barros AL, Soares MA, de Oliveira LM, Marini MM, Villalobos-Duno H, Cunha MM, de Hoog S, da Silveira JF, Henrissat B, Nino-Vega GA, Cisalpino PS, Mora-Montes HM, Almeida SR, Stajich JE, Lopes-Bezerra LM, Vasconcelos AT, Felipe MS (2014) Comparative genomics of the major fungal agents of human and animal sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics 15:943CrossRefPubMedPubMedCentralGoogle Scholar
  24. Vanderpool D, Bracewell RR, McCutcheon JP (2018) Know your farmer: ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Mol Ecol 27(8):2077–2094CrossRefPubMedGoogle Scholar
  25. Wang L, Zhang S, Li JH, Zhang YJ (2018a) Mitochondrial genome, comparative analysis and evolutionary insights into the entomopathogenic fungus Hirsutella thompsonii. Environ Microbiol 20(9):3393–3405CrossRefPubMedGoogle Scholar
  26. Wang R, Dong L, Chen Y, Qu L, Li E, Wang Q, Zhang Y (2017) The complete mitochondrial genome of nematophagous fungus Esteya vermicola. Mitochondr DNA B 2(1):196–197CrossRefGoogle Scholar
  27. Wang R, Dong L, He R, Wang Q, Chen Y, Qu L, Zhang YA (2018b) Comparative genomic analyses reveal the features for adaptation to nematodes in fungi. DNA Res 25(3):245–256CrossRefPubMedCentralGoogle Scholar
  28. Xiao S, Nguyen DT, Wu B, Hao W (2017) Genetic drift and indel mutation in the evolution of yeast mitochondrial genome size. Genome Biol Evol 9(11):3088–3099CrossRefPubMedPubMedCentralGoogle Scholar
  29. Xu JP, Li H (2015) Current perspectives on mitochondrial inheritance in fungi. Cell Health Cytoskel 7:143–154CrossRefGoogle Scholar
  30. Xu JP, Wang PF (2015) Mitochondrial inheritance in basidiomycete fungi. Fungal Biol Rev 29(3–4):209–219CrossRefGoogle Scholar
  31. Yan QQ, Liu XZ, Zhang YJ (2019) Reanalysis of the mitochondrial genome of the nematophagous fungus Hirsutella rhossiliensis. Acta Microbiol Sin 59(2):280–290Google Scholar
  32. Zhang S, Hao AJ, Zhao YX, Zhang XY, Zhang YJ (2017a) Comparative mitochondrial genomics toward exploring molecular markers in the medicinal fungus Cordyceps militaris. Sci Rep 7:40219CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zhang S, Wang XN, Zhang XL, Liu XZ, Zhang YJ (2017b) Complete mitochondrial genome of the endophytic fungus Pestalotiopsis fici: features and evolution. Appl Microbiol Biotechnol 101(4):1593–1604CrossRefPubMedGoogle Scholar
  34. Zhang YJ, Yang XQ, Zhang S, Humber RA, Xu JP (2017c) Genomic analyses reveal low mitochondrial and high nuclear diversity in the cyclosporin-producing fungus Tolypocladium inflatum. Appl Microbiol Biotechnol 101(23–24):8517–8531CrossRefPubMedGoogle Scholar
  35. Zhang YJ, Zhang HY, Liu XZ, Zhang S (2017d) Mitochondrial genome of the nematode endoparasitic fungus Hirsutella vermicola reveals a high level of synteny in the family Ophiocordycipitaceae. Appl Microbiol Biotechnol 101(8):3295–3304CrossRefPubMedGoogle Scholar
  36. Zhang YJ, Zhang S, Zhang GZ, Liu XZ, Wang CS, Xu JP (2015) Comparison of mitochondrial genomes provides insights into intron dynamics and evolution in the caterpillar fungus Cordyceps militaris. Fungal Genet Biol 77:95–107CrossRefPubMedGoogle Scholar
  37. Zhang YJ, Zhao YX, Zhang S, Chen L, Liu XZ (2017e) Reanalysis of the mitochondrial genome of the pneumocandin-producing fungus Glarea lozoyensis. Acta Microbiol Sin 57(5):724–736Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied ChemistryShanxi UniversityTaiyuanChina
  2. 2.School of Life ScienceShanxi UniversityTaiyuanChina
  3. 3.School of AgricultureLudong UniversityYantaiChina

Personalised recommendations