Applied Microbiology and Biotechnology

, Volume 103, Issue 12, pp 4753–4765 | Cite as

Insights into the loss of protein sialylation in an fc-fusion protein-producing CHO cell bioprocess

  • Xinning Chen
  • Xuping Liu
  • Zheng Xiao
  • Jintao Liu
  • Liang Zhao
  • Wen-Song TanEmail author
  • Li FanEmail author
Biotechnological products and process engineering


Sialylation affects circulating half-life, charge distribution, and other biochemical properties of therapeutic glycoproteins. Loss of protein sialylation during glycoprotein-producing bioprocesses could lead to a low final protein sialylation level and bring negative effects on subsequent clinical efficacy. In this work, an Fc-fusion protein-producing Chinese hamster ovary cell fed-batch culture process was studied and insights into the loss of protein sialylation during the Fc-fusion protein production phase (days 5 to 13) were presented. The results showed that the decreased total sialic acid content was 13.84 μg/mg during the production phase, which accounted for 24% of the total sialic acid content on day 5. The lost sialic acids were predominantly from α 2-3 sialylation on N- and O-glycans. Through cell-free incubation and kinetics studies, it was found that the decreased sialic acid content caused by extracellular sialic acid degradation and incomplete glycan biosynthesis were 7.79 μg/mg and 6.05 μg/mg, respectively. The two processes had a nearly equal contribution to the loss of final product sialylation. Detailed characterizations revealed that decreases in sialic acid content were due either to extracellular sialic acid degradation via hydrolysis of α 2-3 sialic acids probably by released cytosolic sialidase or to a lack of galactosylated glycan availability for sialylation during late-stage glycosylation. Our work provides a better understanding of losses in protein sialylation during glycoprotein manufacturing.


Chinese hamster ovary cells Fc-fusion protein Sialylation Extracellular degradation Intracellular biosynthesis 


Compliance with ethical standards


This work was supported by the Major Programs of Development Foundation of Shanghai Zhangjiang National Independent Innovation Demonstration Zone (No. ZJ2015-ZD-002).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_9850_MOESM1_ESM.pdf (310 kb)
ESM 1 (PDF 309 kb)


  1. Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13(10):93R–104R. CrossRefPubMedGoogle Scholar
  2. Bongers J, Devincentis J, Fu J, Huang P, Kirkley DH, Leister K, Liu P, Ludwig R, Rumney K, Tao L, Wu W, Russell RJ (2011) Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography–mass spectrometry peptide mapping. J Chromatogr A 1218(45):8140–8149. CrossRefPubMedGoogle Scholar
  3. Bora de Oliveira K, Spencer D, Barton C, Agarwal N (2017) Site-specific monitoring of N-glycosylation profiles of a CTLA4-fc-fusion protein from the secretory pathway to the extracellular environment. Biotechnol Bioeng 114(7):1550–1560. CrossRefPubMedGoogle Scholar
  4. Burgon PG, Stanton PG, Robertson DM (1996) In vivo bioactivities and clearance patterns of highly purified human luteinizing hormone isoforms. Endocrinology 137(11):4827–4836. CrossRefPubMedGoogle Scholar
  5. Byrne B, Donohoe GG, O’Kennedy R (2007) Sialic acids: carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells. Drug Discov Today 12(7):319–326. CrossRefPubMedGoogle Scholar
  6. Cha H-M, Lim J-H, Lee K-S, Kim D-I (2017) Nucleotide sugar precursor feeding strategy to enhance sialylation of albumin-erythropoietin in CHO cell cultures. Process Biochem 66:197–204. CrossRefGoogle Scholar
  7. Chen X, Liu J, Liu X, Fan L, Zhao L, Tan W-S (2018) Characterization and minimization of sialic acid degradation in an fc-fusion protein-producing CHO cell bioprocess. Process Biochem 73:162–169. CrossRefGoogle Scholar
  8. Crowell CK, Grampp GE, Rogers GN, Miller J, Scheinman RI (2007) Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol Bioeng 96(3):538–549. CrossRefPubMedGoogle Scholar
  9. Egrie JC, Browne JK (2001) Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transplant 16(suppl 3):3–13. CrossRefPubMedGoogle Scholar
  10. Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31(4):290–299. CrossRefPubMedGoogle Scholar
  11. Eon-Duval A, Broly H, Gleixner R (2012) Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog 28(3):608–622. CrossRefPubMedGoogle Scholar
  12. Gramer MJ, Goochee CF (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol Prog 9(4):366–373. CrossRefPubMedGoogle Scholar
  13. Gramer MJ, Goochee CF, Chock VY, Brousseau DT, Sliwkowski MB (1995) Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Nat Biotechnol 13(7):692–698. CrossRefGoogle Scholar
  14. Ha TK, Lee GM (2014) Effect of glutamine substitution by TCA cycle intermediates on the production and sialylation of fc-fusion protein in Chinese hamster ovary cell culture. J Biotechnol 180(0):23-29 doi:
  15. Harazono A, Kobayashi T, Kawasaki N, Itoh S, Tada M, Hashii N, Ishii A, Arato T, Yanagihara S, Yagi Y, Koga A, Tsuda Y, Kimura M, Sakita M, Kitamura S, Yamaguchi H, Mimura H, Murata Y, Hamazume Y, Sato T, Natsuka S, Kakehi K, Kinoshita M, Watanabe S, Yamaguchi T (2011) A comparative study of monosaccharide composition analysis as a carbohydrate test for biopharmaceuticals. Biologicals 39(3):171–180. CrossRefPubMedGoogle Scholar
  16. Hassinen A, Pujol FM, Kokkonen N, Pieters C, Kihlström M, Korhonen K, Kellokumpu S (2011) Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J Biol Chem 286(44):38329–38340. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hong J, Cho S, Yoon S (2010) Substitution of glutamine by glutamate enhances production and galactosylation of recombinant IgG in Chinese hamster ovary cells. Appl Microbiol Biotechnol 88(4):869–876. CrossRefPubMedGoogle Scholar
  18. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949. CrossRefPubMedGoogle Scholar
  19. Houel S, Hilliard M, Yu YQ, McLoughlin N, Martin SM, Rudd PM, Williams JP, Chen W (2013) N- and O-glycosylation analysis of etanercept using liquid chromatography and quadrupole time-of-flight mass spectrometry equipped with electron-transfer dissociation functionality. Anal Chem 86(1):576–584. CrossRefPubMedGoogle Scholar
  20. Jing Y, Qian Y, Li ZJ (2010) Sialylation enhancement of CTLA4-Ig fusion protein in Chinese hamster ovary cells by dexamethasone. Biotechnol Bioeng 107(3):488–496. CrossRefPubMedGoogle Scholar
  21. Lalonde M-E, Durocher Y (2017) Therapeutic glycoprotein production in mammalian cells. J Biotechnol 251(10):128–140. CrossRefPubMedGoogle Scholar
  22. Lewis AM, Croughan WD, Aranibar N, Lee AG, Warrack B, Abu-Absi NR, Patel R, Drew B, Borys MC, Reily MD, Li ZJ (2016) Understanding and controlling sialylation in a CHO fc-fusion process. PLoS One 11(6):e0157111. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liu L (2015) Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and fc-fusion proteins. J Pharm Sci 104(6):1866–1884. CrossRefGoogle Scholar
  24. Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J (2008) Heterogeneity of monoclonal antibodies. J Pharm Sci 97(7):2426–2447. CrossRefPubMedGoogle Scholar
  25. Liu L, Gomathinayagam S, Hamuro L, Prueksaritanont T, Wang W, Stadheim TA, Hamilton SR (2013) The impact of glycosylation on the pharmacokinetics of a TNFR2: fc fusion protein expressed in glycoengineered Pichia pastoris. Pharm Res 30(3):803–812. CrossRefPubMedGoogle Scholar
  26. Liu J, Chen X, Fan L, Deng X, Fai Poon H, Tan W-S, Liu X (2015a) Monitoring sialylation levels of fc-fusion protein using size-exclusion chromatography as a process analytical technology tool. Biotechnol Lett 37(7):1371–1377. CrossRefPubMedGoogle Scholar
  27. Liu J, Wang J, Fan L, Chen X, Hu D, Deng X, Fai Poon H, Wang H, Liu X, Tan W-S (2015b) Galactose supplementation enhance sialylation of recombinant fc-fusion protein in CHO cell: an insight into the role of galactosylation in sialylation. World J Microbiol Biotechnol 31(7):1147–1156. CrossRefPubMedGoogle Scholar
  28. Miao S, Xie P, Zou M, Fan L, Liu X, Zhou Y, Zhao L, Ding D, Wang H, Tan W-S (2017) Identification of multiple sources of the acidic charge variants in an IgG1 monoclonal antibody. Appl Microbiol Biotechnol 101(14):5627–5638. CrossRefPubMedGoogle Scholar
  29. Miyagi T, Yamaguchi K (2012) Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology 22(7):880–896. CrossRefPubMedGoogle Scholar
  30. Ngantung FA, Miller PG, Brushett FR, Tang GL, Wang DIC (2006) RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol Bioeng 95(1):106–119. CrossRefPubMedGoogle Scholar
  31. Qian Y, Lewis AM, Sidnam SM, Bergeron A, Abu-Absi NR, Vaidyanathan N, Deresienski A, Qian N-X, Borys MC, Li ZJ (2017) LongR3 enhances fc-fusion protein N-linked glycosylation while improving protein productivity in an industrial CHO cell line. Process Biochem 53:201–209. CrossRefGoogle Scholar
  32. Reinhart D, Damjanovic L, Kaisermayer C, Kunert R (2015) Benchmarking of commercially available CHO cell culture media for antibody production. Appl Microbiol Biotechnol 99(11):4645–4657. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S (2009) Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol 220(1):144–154. CrossRefPubMedGoogle Scholar
  34. Rouiller Y, Périlleux A, Marsaut M, Stettler M, Vesin M-N, Broly H (2012) Effect of hydrocortisone on the production and glycosylation of an fc-fusion protein in CHO cell cultures. Biotechnol Prog 28(3):803–813. CrossRefPubMedGoogle Scholar
  35. Smutova V, Albohy A, Pan X, Korchagina E, Miyagi T, Bovin N, Cairo CW, Pshezhetsky AV (2014) Structural basis for substrate specificity of mammalian neuraminidases. PLoS One 9(9):e106320. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wong DCF, Wong NSC, Goh JSY, May LM, Yap MGS (2010a) Profiling of N-glycosylation gene expression in CHO cell fed-batch cultures. Biotechnol Bioeng 107(3):516–528. CrossRefPubMedGoogle Scholar
  37. Wong NS, Wati L, Nissom PM, Feng H, Lee M, Yap MG (2010b) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng 107(2):321–336. CrossRefPubMedGoogle Scholar
  38. Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yang Z, Wang S, Halim A, Schulz MA, Frodin M, Rahman SH, Vester-Christensen MB, Behrens C, Kristensen C, Vakhrushev SY, Bennett EP, Wandall HH, Clausen H (2015) Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol 33(8):842–844. CrossRefPubMedGoogle Scholar
  40. Yin B, Gao Y, Chung C-y, Yang S, Blake E, Stuczynski MC, Tang J, Kildegaard HF, Andersen MR, Zhang H, Betenbaugh MJ (2015) Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation. Biotechnol Bioeng 112(11):2343–2351. CrossRefPubMedGoogle Scholar
  41. Zhang M, Koskie K, Ross JS, Kayser KJ, Caple MV (2010) Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells. Biotechnol Bioeng 105(6):1094–1105. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations