Peptide dendrimers G3KL and TNS18 inhibit Pseudomonas aeruginosa biofilms

  • Xiao Han
  • Yujie Liu
  • Yibing Ma
  • Mengqing Zhang
  • Zhengjin He
  • Thissa N. Siriwardena
  • Haijin Xu
  • Yanling Bai
  • Xiuming Zhang
  • Jean-Louis ReymondEmail author
  • Mingqiang QiaoEmail author
Applied microbial and cell physiology


Herein we report that peptide dendrimers G3KL and TNS18, which were recently reported to control multidrug-resistant bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, strongly inhibit biofilm formation by P. aeruginosa PA14 below their minimum inhibitory concentration (MIC) value, under which conditions they also strongly affect swarming motility. Eradication of preformed biofilms, however, required concentrations above the MIC values. Scanning electron microscopy observation and confocal laser scanning micrographs showed that peptide dendrimers can destroy the biofilm morphological structure and thickness in a dose-dependent manner, even make the biofilm dispersed completely. Membrane potential analysis indicated that planktonic cells treated with peptide dendrimers presented an increase in fluorescence intensity, suggesting that cytoplasmic membrane could be the target of G3KL and TNS18 similarly to polymyxin B. RNA-seq analysis showed that the expressions of genes in the arnBCADTEF operon-regulating lipid A modification resulting in resistance to AMPs are differentially affected between these three compounds, suggesting that each compound targets the cell membrane but in different manner. Potent activity on planktonic cells and biofilms of P. aeruginosa suggests that peptide dendrimers G3KL and TNS18 are promising candidates of clinical development for treating infections.


Pseudomonas aeruginosa Biofilm Peptide dendrimers Membrane Polymyxin B Mingqiang Qiao and Jean-Louis Reymond contributed equally to this work. 



The authors greatly appreciate Prof. Dr. Jean-Louis Reymond from Department of Chemistry and Biochemistry of the University of Bern (Switzerland) for providing the peptides G3KL and TNS18.


This work was supported in part by the Sino-Swiss scientific and technological cooperation project supported by the Ministry of Science and Technology of China (No. 2015DFG32140), the National Natural Science Foundation of China (No. 31770102), and the Swiss National Science Foundation (No. IZLCZ2_155982).

Compliance with ethical standards

This article does not contain any study with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

253_2019_9801_MOESM1_ESM.pdf (412 kb)
ESM 1 (PDF 423 kb)


  1. Abdel SP, Kaeppeli A, Siriwardena T, Darbre T, Perron K, Jafari P, Reymond JL, Pioletti DP, Applegate LA (2016) Anti-microbial dendrimers against multidrug-resistant P. aeruginosa enhance the angiogenic effect of biological burn-wound bandages. Sci Rep 6:1–10. CrossRefGoogle Scholar
  2. Balasoiu M, Balasoiu AT, Manescu R, Avramescu C, Ionete O (2014) Pseudomonas aeruginosa resistance phenotypes and phenotypic highlighting methods. Curr Health Sci J 40(2):85–92. Google Scholar
  3. Bilecen K, Fong JC, Cheng A, Jones CJ, Zamorano SD, Yildiz FH (2015) Polymyxin B resistance and biofilm formation in Vibrio cholerae are controlled by the response regulator CarR. Infect Immun 83(3):1199–1209. CrossRefGoogle Scholar
  4. Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, Rozali N, Koh SF, Hoh CC, Puthucheary SD, Nathan S (2015) Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence. BMC Genomics 16(1):471–485. CrossRefGoogle Scholar
  5. Diez AM, Morosini MI, Tedim AP, Rodriguez I, Aktas Z, Canton R (2015) Antimicrobial activity of fosfomycin-tobramycin combination against Pseudomonas aeruginosa isolates assessed by time-kill assays and mutant prevention concentrations. Antimicrob Agents Chemother 59(10):6039–6045. CrossRefGoogle Scholar
  6. Dosler S, Karaaslan E (2014) Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 62:32–37. CrossRefGoogle Scholar
  7. Eggimann GA, Blattes E, Buschor S, Biswas R, Kammer SM, Darbre T, Reymond JL (2014) Designed cell penetrating peptide dendrimers efficiently internalize cargo into cells. Chemical communications 50(55):7254–7257. CrossRefGoogle Scholar
  8. Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker NT (2014) Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 16(7):1961–1981. CrossRefGoogle Scholar
  9. Fernandez L, Alvarez OC, Wiegand I, Olivares J, Kocincova D, Lam JS, Martinez JL, Hancock RE (2013) Characterization of the polymyxin B resistome of Pseudomonas aeruginosa. Antimicrob Agents Chemother 57(1):110–119. CrossRefGoogle Scholar
  10. Fuente NC, Reffuveille F, Haney EF, Straus SK, Hancock RE (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10(5):1–12. Google Scholar
  11. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146(10):2395–2407CrossRefGoogle Scholar
  12. Hoffman LR, Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436(7054):1171–1175. CrossRefGoogle Scholar
  13. Johansson EM, Crusz SA, Kolomiets E, Buts L, Kadam RU, Cacciarini M, Bartels KM, Diggle SP, Camara M, Williams P, Loris R, Nativi C, Rosenau F, Jaeger KE, Darbre T, Reymond JL (2008) Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem Biol 15(12):1249–1257. CrossRefGoogle Scholar
  14. Kadam RU, Bergmann M, Hurley M, Garg D, Cacciarini M, Swiderska MA, Nativi C, Sattler M, Smyth AR, Williams P, Camara M, Stocker A, Darbre T, Reymond J-L (2011) A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms. Angew Chem, Int Ed 50(45):10631–10635. CrossRefGoogle Scholar
  15. Kong W, Zhao J, Kang H, Zhu M, Zhou T, Deng X, Liang H (2015) ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa. Nucleic Acids Res 43(17):8268–8282. CrossRefGoogle Scholar
  16. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103(8):2833–2838. CrossRefGoogle Scholar
  17. Lin L, Nonejuie P, Munguia J, Hollands A, Olson J, Dam Q, Kumaraswamy M, Rivera H, Corriden R, Rohde M, Hensler ME, Burkart MD, Pogliano J, Sakoulas G, Nizet V (2015) Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant gram-negative bacterial pathogens. EBioMedicine 2(7):690–698. CrossRefGoogle Scholar
  18. Manner S, Vahermo M, Skogman ME, Krogerus S, Vuorela PM, Yli KJ, Fallarero A, Moreira VM (2015) New derivatives of dehydroabietic acid target planktonic and biofilm bacteria in Staphylococcus aureus and effectively disrupt bacterial membrane integrity. Eur J Med Chem 102:68–79. CrossRefGoogle Scholar
  19. Maria NS, Almeida KC, Macedo ML, Franco OL (2015) Understanding bacterial resistance to antimicrobial peptides: from the surface to deep inside. Biochim Biophys Acta 1848(11 Pt B):3078–3088. CrossRefGoogle Scholar
  20. McGrath DM, Barbu EM, Driessen WH, Lasco TM, Tarrand JJ, Okhuysen PC, Kontoyiannis DP, Sidman RL, Pasqualini R, Arap W (2013) Mechanism of action and initial evaluation of a membrane active all-D-enantiomer antimicrobial peptidomimetic. Proc Natl Acad Sci U S A 110(9):3477–3482. CrossRefGoogle Scholar
  21. McPhee JB, Bains M, Winsor G, Lewenza S, Kwasnicka A, Brazas MD, Brinkman FS, Hancock RE (2006) Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol 188(11):3995–4006. CrossRefGoogle Scholar
  22. Michaud G, Visini R, Bergmann M, Salerno G, Bosco R, Gillon E, Richichi B, Nativi C, Imberty A, Stocker A, Darbre T, Reymond JL (2016) Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide dendrimers. Chem Sci 7(1):166–182. CrossRefGoogle Scholar
  23. Murray JL, Kwon T, Marcotte EM, Whiteley M (2015) Intrinsic antimicrobial resistance determinants in the superbug Pseudomonas aeruginosa. MBio 6(6):e01603-15. CrossRefGoogle Scholar
  24. Pires J, Siriwardena TN, Stach M, Tinguely R, Kasraian S, Luzzaro F, Leib SL, Darbre T, Reymond JL, Endimiani A (2015) In vitro activity of the novel antimicrobial peptide dendrimer G3KL against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Antimicrob Agents Chemother 59(12):7915–7918. CrossRefGoogle Scholar
  25. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700. CrossRefGoogle Scholar
  26. Rahman M, Kühn I, Rahman M, Olsson LB, Möllby R (2004) Evaluation of a scanner-assisted colorimetric MIC method for susceptibility testing of gram-negative fermentative bacteria. Appl Environ Microbiol 70(4):2398–2403. CrossRefGoogle Scholar
  27. Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97(9):4885–4890. CrossRefGoogle Scholar
  28. Reymond JL, Darbre T (2012) Peptide and glycopeptide dendrimer apple trees as enzyme models and for biomedical applications. Org Biomol Chem 10(8):1483–1492. CrossRefGoogle Scholar
  29. Siriwardena TN, Stach M, He R, Gan BH, Javor S, Heitz M, Ma L, Cai X, Chen P, Wei D, Li H, Ma J, Kohler T, Van DC, Darbre T, Reymond JL (2018) Lipidated peptide dendrimers killing multidrug-resistant bacteria. J Am Chem Soc 140(1):423–432. CrossRefGoogle Scholar
  30. Sommer P, Fluxa VS, Darbre T, Reymond JL (2009) Proteolysis of peptide dendrimers. ChemBioChem 10(9):1527–1536. CrossRefGoogle Scholar
  31. Stach M, Maillard N, Kadam RU, Kalbermatter D, Meury M, Page MGP, Fotiadis D, Darbre T, Reymond J-L, (2012) Membrane disrupting antimicrobial peptide dendrimers with multiple amino termini. Med. Chem. Commun. 3(1):86-89Google Scholar
  32. Stach M, Siriwardena TN, Kohler T, van Delden C, Darbre T, Reymond JL (2014) Combining topology and sequence design for the discovery of potent antimicrobial peptide dendrimers against multidrug-resistant Pseudomonas aeruginosa. Angew Chem Int Ed Engl 53(47):12827–12831. CrossRefGoogle Scholar
  33. Strehmel J, Neidig A, Nusser M, Geffers R, Brenner WG, Overhage J (2015) Sensor kinase PA4398 modulates swarming motility and biofilm formation in Pseudomonas aeruginosa PA14. Appl Environ Microbiol 81(4):1274–1285. CrossRefGoogle Scholar
  34. Taylor PK, Yeung AT, Hancock RE (2014) Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol 191:121–130. CrossRefGoogle Scholar
  35. Thien FC, George AO (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39CrossRefGoogle Scholar
  36. Wang A, Wang Q, Kudinha T, Xiao S, Zhuo C (2016) Effects of fluoroquinolones and azithromycin on biofilm formation of Stenotrophomonas maltophilia. Sci Rep 6:29701–29711CrossRefGoogle Scholar
  37. Wolfmeier H, Pletzer D, Mansour SC, Hancock RE (2017) New perspectives in biofilm eradication. ACS Infect Dis.
  38. Zhang SK, Song JW, Gong F, Li SB, Chang HY, Xie HM, Gao HW, Tan YX, Ji SP (2016) Design of an alpha-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep 6:1–13. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiao Han
    • 1
  • Yujie Liu
    • 1
  • Yibing Ma
    • 1
  • Mengqing Zhang
    • 2
  • Zhengjin He
    • 3
  • Thissa N. Siriwardena
    • 4
  • Haijin Xu
    • 1
  • Yanling Bai
    • 1
  • Xiuming Zhang
    • 1
  • Jean-Louis Reymond
    • 4
    Email author
  • Mingqiang Qiao
    • 1
    Email author
  1. 1.The Key Laboratory of Molecular Microbiology and Technology Ministry of EducationNankai UniversityTianjinChina
  2. 2.Electricity Information and Automation CollegeCivil Aviation University of ChinaTianjinChina
  3. 3.Key Laboratory of Systems Biology, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  4. 4.Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland

Personalised recommendations