Advertisement

Structural modulation of gut microbiota reveals Coix seed contributes to weight loss in mice

  • Sheng LiuEmail author
  • Fei Li
  • Xiuqing Zhang
Genomics, transcriptomics, proteomics

Abstract

Coix seed (CS) is widely used as food material and herbal medicine in Asian countries with hypolipidemic and anti-inflammatory properties. But whether CS takes effect by modulating the composition of the gut microbiota remains unknown. Here, three groups of mice were fed different diets for 5 weeks: standard chow, high fat (HF), and CS added to HF. As compared to chow, mice in HF group demonstrated a significant increase in body weight (BW), fat mass (FM), together with total cholesterol (TC), and they even developed impaired glucose tolerance. These HF-mediated deleterious metabolic effects were counteracted partly by complementing CS. 16S rRNA gene sequencing analysis revealed CS increased the abundance of genera Lactobacillus, Coprococcus, and Akkermansia in the gut microbita, and it also enriched species Akkermansia muciniphila and Lactobacillus agilis. A. muciniphila was reported to be inversely associated with obesity, diabetes and cardiometabolic diseases, while L. agilis was negatively associated with TC, BW, FM and blood glucose in our data. We identified CS-altered microbial metabolic pathways that were linked to Glycerolipid metabolism, Biosynthesis of unsaturated fatty acids, sulfur reduction, and glutathione transport system. Our results indicate CS may be used as prebiotic agents to lose weight and prevent obesity-related metabolic disorders.

Keywords

Obesity 16S rRNA Gut microbiota Coix seed Metabolic disorders 

Notes

Acknowledgements

The authors thank the colleagues at BGI-Shenzhen for their technical support and assistance.

Author contribution

X.Z. conceived and directed the project. F.L. performed treatment and sample collection. S.L. performed data analyses and wrote the manuscript. X.Z. contributed to manuscript revision.

Funding information

This work was supported by grants from the Shenzhen Municipal Government of China (grant nos. CXZZ20150330171521403).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

253_2019_9786_MOESM1_ESM.docx (264 kb)
ESM 1 (DOCX 263 kb)
253_2019_9786_MOESM2_ESM.xlsx (78 kb)
ESM 2 (XLSX 78.3 kb)

References

  1. Barengolts E (2016) Gut microbiota, prebiotics, probiotics, and synbiotics in management of obesity and prediabetes: review of randomized controlled trials. Endocr Pract 22(10):1224–1234.  https://doi.org/10.4158/EP151157.RA CrossRefGoogle Scholar
  2. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F (2015) Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22(4):658–668.  https://doi.org/10.1016/j.cmet.2015.07.026 CrossRefGoogle Scholar
  3. Cani PD, de Vos WM (2017) Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol 8:1765.  https://doi.org/10.3389/fmicb.2017.01765
  4. Chang CJ, Lin CS, Lu CC, Martel J, Ko YF, Ojcius DM, Tseng SF, Wu TR, Chen YY, Young JD, Lai HC (2015) Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun 6:7489.  https://doi.org/10.1038/ncomms8489 CrossRefGoogle Scholar
  5. Chen HJ, Chung CP, Chiang W, Lin YL (2011) Anti-inflammatory effects and chemical study of a flavonoid-enriched fraction from adlay bran. Food Chem 126(4):1741–1748.  https://doi.org/10.1016/j.foodchem.2010.12.074 CrossRefGoogle Scholar
  6. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor K, O'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O'Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184.  https://doi.org/10.1038/nature11319 CrossRefGoogle Scholar
  7. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270.  https://doi.org/10.1016/j.cell.2012.01.035 CrossRefGoogle Scholar
  8. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, consortium ANRM, Dore J, Zucker JD, Clement K, Ehrlich SD (2013) Dietary intervention impact on gut microbial gene richness. Nature 500(7464):585–588.  https://doi.org/10.1038/nature12480 CrossRefGoogle Scholar
  9. Cowan TE, Palmnas MS, Yang J, Bomhof MR, Ardell KL, Reimer RA, Vogel HJ, Shearer J (2014) Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics. J Nutr Biochem 25(4):489–495.  https://doi.org/10.1016/j.jnutbio.2013.12.009 CrossRefGoogle Scholar
  10. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, Consortium MI-O, Dumas ME, Rizkalla SW, Dore J, Cani PD, Clement K (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65(3):426–436.  https://doi.org/10.1136/gutjnl-2014-308778
  11. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, Serrazanetti DI, Di Cagno R, Ferrocino I, Lazzi C, Turroni S, Cocolin L, Brigidi P, Neviani E, Gobbetti M, O'Toole PW, Ercolini D (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65(11):1812–1821.  https://doi.org/10.1136/gutjnl-2015-309957 CrossRefGoogle Scholar
  12. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107(33):14691–14696.  https://doi.org/10.1073/pnas.1005963107 CrossRefGoogle Scholar
  13. Delzenne NM, Neyrinck AM, Backhed F, Cani PD (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7(11):639–646.  https://doi.org/10.1038/nrendo.2011.126 CrossRefGoogle Scholar
  14. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072.  https://doi.org/10.1128/AEM.03006-05 CrossRefGoogle Scholar
  15. Egshatyan L, Kashtanova D, Popenko A, Tkacheva O, Tyakht A, Alexeev D, Karamnova N, Kostryukova E, Babenko V, Vakhitova M, Boytsov S (2016) Gut microbiota and diet in patients with different glucose tolerance. Endocr Connect 5(1):1–9.  https://doi.org/10.1530/EC-15-0094 CrossRefGoogle Scholar
  16. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110(22):9066–9071.  https://doi.org/10.1073/pnas.1219451110
  17. Gao X (2006) Applied illustrated compendium of materia medica (Chinese-English edition). Foreign Languages PressGoogle Scholar
  18. He Q, Li X, Liu C, Su L, Xia Z, Li X, Li Y, Li L, Yan T, Feng Q, Xiao L (2016) Dysbiosis of the fecal microbiota in the TNBS-induced Crohn’s disease mouse model. Appl Microbiol Biotechnol 100(10):4485–4494.  https://doi.org/10.1007/s00253-015-7205-x CrossRefGoogle Scholar
  19. Heydemann A (2016) An overview of murine high fat diet as a model for type 2 diabetes mellitus. J Diabetes Res 2016:2902351.  https://doi.org/10.1155/2016/2902351 CrossRefGoogle Scholar
  20. Hu FB (2011) Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 34(6):1249–1257.  https://doi.org/10.2337/dc11-0442 CrossRefGoogle Scholar
  21. Iantomasi T, Favilli F, Marraccini P, Magaldi T, Bruni P, Vincenzini MT (1997) Glutathione transport system in human small intestine epithelial cells. Biochim Biophys Acta 1330(2):274–283CrossRefGoogle Scholar
  22. Kam J, Puranik S, Yadav R, Manwaring HR, Pierre S, Srivastava RK, Yadav RS (2016) Dietary interventions for type 2 diabetes: how millet comes to help. Front Plant Sci 7:1454.  https://doi.org/10.3389/fpls.2016.01454 CrossRefGoogle Scholar
  23. Kim SO, Yun SJ, Jung B, Lee EH, Hahm DH, Shim I, Lee HJ (2004) Hypolipidemic effects of crude extract of adlay seed (Coix lachrymajobi var. mayuen) in obesity rat fed high fat diet: relations of TNF-alpha and leptin mRNA expressions and serum lipid levels. Life Sci 75(11):1391–1404.  https://doi.org/10.1016/j.lfs.2004.03.006
  24. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821.  https://doi.org/10.1038/nbt.2676 CrossRefGoogle Scholar
  25. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, HITc M, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546.  https://doi.org/10.1038/nature12506 CrossRefGoogle Scholar
  26. Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, Morris MJ (2015) Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One 10(5):e0126931.  https://doi.org/10.1371/journal.pone.0126931 CrossRefGoogle Scholar
  27. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023.  https://doi.org/10.1038/4441022a CrossRefGoogle Scholar
  28. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, Xia H, Liu Z, Cui B, Liang P, Xi L, Jin J, Ying X, Wang X, Zhao X, Li W, Jia H, Lan Z, Li F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X, Zhong H, Xie H, Zhang Y, Gu W, Deng X, Shen B, Xu X, Yang H, Xu G, Bi Y, Lai S, Wang J, Qi L, Madsen L, Wang J, Ning G, Kristiansen K, Wang W (2017) Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 23(7):859–868.  https://doi.org/10.1038/nm.4358 CrossRefGoogle Scholar
  29. Lozupone C, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7:371.  https://doi.org/10.1186/1471-2105-7-371 CrossRefGoogle Scholar
  30. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384(9945):766–781.  https://doi.org/10.1016/S0140-6736(14)60460-8 CrossRefGoogle Scholar
  31. Parseus A, Sommer N, Sommer F, Caesar R, Molinaro A, Stahlman M, Greiner TU, Perkins R, Backhed F (2017) Microbiota-induced obesity requires farnesoid X receptor. Gut 66(3):429–437.  https://doi.org/10.1136/gutjnl-2015-310283 CrossRefGoogle Scholar
  32. Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102(8):2685–2689.  https://doi.org/10.1073/pnas.0406811102 CrossRefGoogle Scholar
  33. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G, Le Chatelier E, Levenez F, Dore J, Mattila I, Plichta DR, Poho P, Hellgren LI, Arumugam M, Sunagawa S, Vieira-Silva S, Jorgensen T, Holm JB, Trost K, Meta HITC, Kristiansen K, Brix S, Raes J, Wang J, Hansen T, Bork P, Brunak S, Oresic M, Ehrlich SD, Pedersen O (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535(7612):376–381.  https://doi.org/10.1038/nature18646 CrossRefGoogle Scholar
  34. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60.  https://doi.org/10.1038/nature11450 CrossRefGoogle Scholar
  35. Rabot S, Membrez M, Blancher F, Berger B, Moine D, Krause L, Bibiloni R, Bruneau A, Gerard P, Siddharth J, Lauber CL, Chou CJ (2016) High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci Rep 6:32484.  https://doi.org/10.1038/srep32484 CrossRefGoogle Scholar
  36. Rey FE, Gonzalez MD, Cheng J, Wu M, Ahern PP, Gordon JI (2013) Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci U S A 110(33):13582–13587.  https://doi.org/10.1073/pnas.1312524110 CrossRefGoogle Scholar
  37. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefGoogle Scholar
  38. Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C, Waget A, Klopp P, Iacovoni J, Klopp C, Mariette J, Bouchez O, Lluch J, Ouarne F, Monsan P, Valet P, Roques C, Amar J, Bouloumie A, Theodorou V, Burcelin R (2012) Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61(4):543–553.  https://doi.org/10.1136/gutjnl-2011-301012 CrossRefGoogle Scholar
  39. Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M (2012) Prediabetes: a high-risk state for diabetes development. Lancet 379(9833):2279–2290.  https://doi.org/10.1016/S0140-6736(12)60283-9 CrossRefGoogle Scholar
  40. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484.  https://doi.org/10.1038/nature07540 CrossRefGoogle Scholar
  41. Wallace JL, Vong L, McKnight W, Dicay M, Martin GR (2009) Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137(2):569–578.  https://doi.org/10.1053/j.gastro.2009.04.012 CrossRefGoogle Scholar
  42. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M (2011) Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378(9793):815–825.  https://doi.org/10.1016/S0140-6736(11)60814-3 CrossRefGoogle Scholar
  43. Wang L, Sun J, Yi Q, Wang X, Ju X (2012) Protective effect of polyphenols extract of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) on hypercholesterolemia-induced oxidative stress in rats. Molecules 17(8):8886–8897.  https://doi.org/10.3390/molecules17088886
  44. Wang Q, Du Z, Zhang H, Zhao L, Sun J, Zheng X, Ren F (2015) Modulation of gut microbiota by polyphenols from adlay (Coix lacryma-jobi L. var. ma-yuen Stapf.) in rats fed a high-cholesterol diet. Int J Food Sci Nutr 66(7):783–789.  https://doi.org/10.3109/09637486.2015.1088941
  45. Wang D, Yang C, Wang Z, Yang Y, Li D, Ding X, Xu W, Zheng Q (2017a) Norcantharidin combined with Coix seed oil synergistically induces apoptosis and inhibits hepatocellular carcinoma growth by downregulating regulatory T cells accumulation. Sci Rep 7(1):9373.  https://doi.org/10.1038/s41598-017-09668-2 CrossRefGoogle Scholar
  46. Wang Y, Zhang C, Zhang S, Zhao Z, Wang J, Song J, Wang Y, Liu J, Hou S (2017b) Kanglaite sensitizes colorectal cancer cells to Taxol via NF-kappaBeta inhibition and connexin 43 upregulation. Sci Rep 7(1):1280.  https://doi.org/10.1038/s41598-017-01480-2 CrossRefGoogle Scholar
  47. Xu J, Lian F, Zhao L, Zhao Y, Chen X, Zhang X, Guo Y, Zhang C, Zhou Q, Xue Z, Pang X, Zhao L, Tong X (2015) Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J 9(3):552–562.  https://doi.org/10.1038/ismej.2014.177 CrossRefGoogle Scholar
  48. Yeh PH, Chiang W, Chiang MT (2006) Effects of dehulled adlay on plasma glucose and lipid concentrations in streptozotocin-induced diabetic rats fed a diet enriched in cholesterol. Int J Vitam Nutr Res 76(5):299–305.  https://doi.org/10.1024/0300-9831.76.5.299 CrossRefGoogle Scholar
  49. Zapala MA, Schork NJ (2006) Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc Natl Acad Sci U S A 103(51):19430–19435.  https://doi.org/10.1073/pnas.0609333103 CrossRefGoogle Scholar
  50. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, Zhang C (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156.  https://doi.org/10.1126/science.aao5774 CrossRefGoogle Scholar
  51. Zhou D, Pan Q, Xin FZ, Zhang RN, He CX, Chen GY, Liu C, Chen YW, Fan JG (2017) Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J Gastroenterol 23(1):60–75.  https://doi.org/10.3748/wjg.v23.i1.60 CrossRefGoogle Scholar
  52. Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M, Fythe MD, Kumar MV, Gewirtz AT (2018) Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23(1):41–53.  https://doi.org/10.1016/j.chom.2017.11.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.BGI Education CenterUniversity of Chinese Academy of SciencesShenzhenChina

Personalised recommendations