Skip to main content
Log in

Bacterial nitrilases and their regulation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Commercially, nitrilases are valuable biocatalysts capable of converting a diverse range of nitriles to carboxylic acids for the greener synthesis of chemicals and pharmaceuticals. Nitrilases are widespread in nature and are both important components of metabolic pathways and a response to environmental factors such as natural or manmade nitriles. Nitrilases are often grouped together on a genome in specific gene clusters that reflect these metabolic functions. Although nitrilase induction systems are still poorly understood, it is known that a powerful Rhodococcal transcription regulator system permits accumulation of intracellular nitrilase of up to 30–40% of total soluble protein in wild type Rhodococcous rhodochrous and host Streptomyces strains. Nitrilase expression inducer molecules encompass a broad range of aliphatic, aromatic and heteroaromatic nitriles, as well as some secondary and tertiary amides that are resistant to nitrilase degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Oddly, the nitA gene product is labelled as an aliphatic nitrilase in UniProt (UniProtKB Q03217: NRL2_RHORH)

References

  • Almatawah QA, Cowan DA (1999) Thermostable nitrilase catalyzed production of nicotinic acid from 3-cyanopyridine. Enzym Microb Technol 25:718–724

    Article  CAS  Google Scholar 

  • Almatawah QA, Cramp R, Cowan DA (1999) Characterization of an inducible nitrilase from a thermophilic bacillus. Extremophiles 3:283–291

    Article  CAS  PubMed  Google Scholar 

  • Alonso FOM, Oestreicher EG, Antunes OAC (2008) Production of enantiomerically pure D-phenylglycine using Pseudomonas aeruginosa 10145 as biocatalyst. Braz J Chem Eng 25:1–8

    Article  CAS  Google Scholar 

  • Bandyopadhyay AK, Nagasawa T, Asano Y, Fujishiro K, Tani Y, Yamada H (1986) Purification and characterisation of benzonitrilases from Arthrobacter sp. strain J-1. Appl Environ Microbiol 51:302–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Kaul P, Banerjee UC (2006) Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Arch Microbiol 184:407–418

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Dubey S, Kaul P, Barse B, Piotrowski M, Banerjee UC (2009) Enantioselective nitrilase from Pseudomonas putida: cloning, heterologous expression, and bioreactor studies. Mol Biotechnol 41:35–41

    Article  CAS  PubMed  Google Scholar 

  • Bayer S, Birkemeyer C, Ballschmite M (2011) A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. Appl Microbiol Biotechnol 89:91–98

    Article  CAS  PubMed  Google Scholar 

  • Beck A, Divakar PK, Zhang N, Molina MC, Struwe L (2015) Evidence of ancient horizontal gene transfer between fungi and the terrestrial alga Trebouxia. Org Divers Evol 15:235–248

    Article  Google Scholar 

  • Bekker V, Dodd A, Brady D, Rumbold K (2014) Tools for metabolic engineering in Streptomyces. Bioengineered 5:293–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhalla TC, Miura A, Wakamoto A, Ohba Y, Furuhasi K (1992) Asymmetric hydrolysis of α-amino nitriles by a nitrilase of Rhodococcus rhodochrous PA-34. Appl Microbiol Biotechnol 37:184–190

    Article  CAS  Google Scholar 

  • Bork P, Koonin EV (1994) A new family of carbon-nitrogen hydrolases. Protein Sci 3:1344–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner C (2002) Catalysis in the nitrilase superfamily. Curr Opin Struct Biol 12:775–782

    Article  CAS  PubMed  Google Scholar 

  • Brunner S, Eppinger E, Fischer S, Gröning J, Stolz A (2018) Conversion of aliphatic nitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191. World J Microbiol Biotechnol 34:91

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Huang L, Xu C, Liu X, He J, Zinder SH, Li S, Jiang J (2013) Molecular characterization of the enzymes involved in the degradation of a brominated aromatic herbicide. Mol Microbiol 89:1121–1139

    Article  CAS  PubMed  Google Scholar 

  • Chhiba-Govindjee VP, Mathiba K, van der Westhuyzen CW, Steenkamp P, Rashamuse JK, Stoychev S, Bode ML, Brady D (2018) Dimethylformamide is a novel nitrilase inducer in Rhodococcus rhodochrous. Appl Microbiol Biotechnol 102:10055–10065

    Article  CAS  PubMed  Google Scholar 

  • Copely SD (2017) Shining a light on enzyme promiscuity. Curr Opin Struct Biol 47:167–175

    Article  CAS  Google Scholar 

  • Dennet GV, Blamey JM (2016) A new thermophilic nitrilase from an Antarctic hyperthermophilic microorganism. Front Bioeng Biotechnol 4:5

    Google Scholar 

  • Dhillon JK, Shivaraman N (1999) Biodegradation of cyanide compounds by a Pseudomonas species (S1). Can J Microbiol 45:201–208

    Article  CAS  PubMed  Google Scholar 

  • Dooley-Cullinane T-M, O’Reilly C, Weiner DP AB, O'Neill D, Owens E, O'Meara D, Coffey L (2018) The use of clade-specific PCR assays to identify novel nitrilase genes from environmental isolates. Microbiol Open 2018:e700

    Google Scholar 

  • Estepa J, Luque-Almagro VM, Manso I, Paz Escribano M, Martínez-Luque M, Castillo F, Moreno-Vivián C, Dolores Roldán M (2012) The nit1C gene cluster of Pseudomonas pseudoalcaligenes CECT5344 involved in assimilation of nitriles is essential for growth on cyanide. Environ Microbiol Rep 4:326–334

    Article  CAS  PubMed  Google Scholar 

  • Expasy Enzyme database (2019) https://enzyme.expasy.org/cgi-bin/enzyme/enzyme-search-de. Accessed 01 Feb 2019

  • Fan H, Chen L, Sun H, Wang H, Liu Q, Ren Y, Wei D (2017) Characterization of a novel nitrilase, BGC4, from Paraburkholderia graminis showing wide-spectrum substrate specificity, a potential versatile biocatalyst for the degradation of nitriles. Biotechnol Lett 39:1725–1731

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9:22–34

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Colbrie G, Matama T, Heumann S, Martinkova L, Paulo AC, Guebitz G (2007) Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. J Biotechnol 129:62–68

    Article  CAS  PubMed  Google Scholar 

  • Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL (1997) AraC/XylS family of transcriptional regulators. Microbiol Molec Biol Rev 61:393–410

    CAS  Google Scholar 

  • Gavagan JE, DiCosimo R, Eisenberg A, Folsom PW FSK, Hahn EC, Shneide KJ, Fallon RD (1999) A Gram-negative bacterium producing a heat-stable nitrilase highly active on aliphatic dinitriles. Appl Microbiol Biotechnol 52:654–659

    Article  CAS  Google Scholar 

  • Goldlust A, Bohak Z (1989) Induction, purification, and characterization of the nitrilase of Fusarium oxysporum f. sp. melonis. Biotechnol Appl Biochem 11:581–601

    CAS  Google Scholar 

  • Gong J-S, Li H, Zhu X-Y, Lu Z-M, Wu Y, Shi J-S, Xu Z-H (2012a) Fungal His-tagged nitrilase from Gibberella intermedia: gene cloning, heterologous expression and biochemical properties. PLoS One 7(11):e50622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong J-S, Lu Z-M, Li H, Shi J-S, Zhou Z-M, Xu Z-H (2012b) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11:1–18

    Article  CAS  Google Scholar 

  • Günther J, Irmisch S, Lackus ND, Reichelt M, Köllner GJ (2018) The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus triochocarpa. BMC Plant Biol 18:251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hann EC, Sigmund AE, Fager SK, Cooling FB, Gavagan JE, Bramucci MG, Chauhan S, Payne MS, DiCosimo R (2004) Regioselective biocatalytic hydrolysis of (E,Z)-2-methyl-2-butenenitrile for production of (E)-2-methyl-2-butenoic acid. Tetrahedron 60:577–581

    Article  CAS  Google Scholar 

  • Harper DB (1977a) Microbial metabolism of aromatic nitriles: enzymology of C-N cleavage by Nocardia sp. (Rhodococcus group) NCIB 11216. Biochem J 165:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper DB (1977b) Fungal degradation of aromatic nitriles enzymology of C-N cleavage by Fusarium solani. J Biochem 167:685–692

    Article  CAS  Google Scholar 

  • Harper DB (1985) Characterization of a nitrilase from Nocardia sp. (Rhodochrous group) N.C.I.B. 11215, using p-hydroxybenzonitrile as sole carbon source. Int J BioChemiPhysics 17:677–683

    Article  CAS  Google Scholar 

  • Hashimoto Y (2007) Development of novel expression systems for actinomycetes. Actinomycetologica 21:70–75

    Article  CAS  Google Scholar 

  • Heinemann U, Engels D, Burger S, Kiziak C, Mattes R, Stolz A (2003) Cloning of a nitrilase gene from the cyanobacterium Synechocystis sp. strain PCC6803 and heterologous expression and characterization of the encoded protein. Appl Environ Microbiol 69:4359–4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Ōmura S, Kobayashi M (2004) Hyper-inducible expression system for Streptomycetes. Proc Nat Acad Sci 101:14031–14035

    Article  CAS  PubMed  Google Scholar 

  • Hook RH, Robinson WG (1964) Ricinine nitrilase: II. Purification and properties. J Biol Chem 239:4263–4267

    CAS  PubMed  Google Scholar 

  • Howden AJM, Preston GM (2009) Nitrilase enzymes and their role in plant-microbe interactions. Microbial Biotechnol 2:441–451

    Article  CAS  Google Scholar 

  • Howden AJM, Rico A, Mentlak T, Miguet L, Preston GM (2009a) Pseudomonas syringae pv. syringae B728a hydrolyses indole-3-acetonitrile to the plant hormone indole-3-acetic acid. Mol Plant Pathol 10:857–865

    Article  CAS  PubMed  Google Scholar 

  • Howden AJM, Harrison CJ, Preston GM (2009b) A conserved mechanism for nitrile metabolism in bacteria and plants. Plant J 57:243–253

    Article  CAS  PubMed  Google Scholar 

  • Hoyle AJ, Bunch AW, Knowles CJ (1998) The nitrilases of Rhodococcus rhodochrous NCIMB 11216. Enzym Microb Technol 23:475–482

    Article  CAS  Google Scholar 

  • Jones LB, Ghosh P, Lee J-H, Chou C-N, Kunz DA (2018) Linkage of the Nit1C gene cluster to bacterial cyanide assimilation as a nitrogen source. Microbiology 164:956–968

    Article  CAS  PubMed  Google Scholar 

  • Jyoti BK, Chauhan K, Attri C, Seth A (2017) Improving stability and reusability of Rhodococcus pyridinivorans NIT-36 nitrilase by whole cell immobilization using chitosan. IntJ Biol Macromol 103:8–15

    Article  CAS  Google Scholar 

  • Kamal A, Kumar MS, Kumar CG, Shaik TB (2011) Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber strain AKSH-84. J Microbiol Biotechnol 21:37–42

    Article  CAS  PubMed  Google Scholar 

  • Kaplan O, Nikolau K, Pisvejcova CA, Martinkova L (2006a) Hydrolysis of nitriles and amides by filamentous fungi. Enzym Microb Technol 38:260–264

    Article  CAS  Google Scholar 

  • Kaplan O, Vejvoda V, Charvátová-Pišvejcová A, Martínková L (2006b) Hyperinduction of nitrilases in filamentous fungi. J Ind Microbiol Biotechnol 33:891–896

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Nakamura K, Sakiyama H, Mayhew SG, Asano Y (2000) Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp, strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochem 39:800–809

    Article  CAS  Google Scholar 

  • Kaur G, Soni P, Tewari R, Sharma R (2014) Isolation and characterization of a nitrile-hydrolysing bacterium Isoptericola variabilis RGT01. Indian J Microbiol 54:232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandelwal AK, Nigam VK, Chaudary B, Mohan MK, Ghosh P (2007) Optimization of nitrilase production from a new thermophilic isolate. J Chem Technol Biotechnol 82:646–651

    Article  CAS  Google Scholar 

  • Kiziak C, Conradt D, Stolz A, Mattes R, Klein J (2005) Nitrilase from Pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and bio-chemical characterization of the recombinant enzyme. Microbiology 151:3639–3648

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Shimizu S (1994) Versatile nitrilases: nitrile-hydrolysing enzymes. FEMS Microbiol Lett 120:217–224

    Article  CAS  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1989) Nitrilase of Rhodococcus rhodochrous J1. Purification and characterization. Eur J Biochem 182:349–356

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1990) Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J Bacteriol 17:4807–4815

    Article  Google Scholar 

  • Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1991) Hyperinduction of an aliphatic nitrilase by Rhodococcus rhodochrous K22. FEMS Microbiol Lett 77:121–123

    Article  CAS  Google Scholar 

  • Kobayashi M, Komeda H, Yanaka N, Nagasawa T, Yamada H (1992a) Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue. J Biol Chem 267:20746–20751

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1992b) Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. Biochem 31:9000–9007

    Article  CAS  Google Scholar 

  • Komeda H, Hori Y, Kobayashi M, Shimizu S (1996) Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci U S A 93:10572–10577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Kumar V, Thakur N, Bhalla TC (2015) Bench scale synthesis of p-hydroxybenzoic acid using whole-cell nitrilase of Gordonia terrae mutant E9. Bioprocess Biosyst Eng 38:1267–1279

    Article  CAS  PubMed  Google Scholar 

  • Lathe WCIII, Snel B, Bork P (2000) Gene context conservation of a higher order than operons. Trends Biochem Sci 25:474–479

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG (2003) Gene organization: selection, selfishness, and serendipity. Ann Rev Microbiol 57:419–440

    Article  CAS  Google Scholar 

  • Layh N, Parratt J, Willets A (1998) Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Mol Catal B Enzym 5:467–474

    Article  CAS  Google Scholar 

  • Lévy-Schil S, Soubrier F, Crutz-LeCoq A-M, Faucher D, Crouzet J, Pétré D (1995) Aliphatic nitrilase from a soil-isolated Comamonas testosteroni sp.: gene cloning and overexpression, purification and primary structure. Gene 161:15–20

    Article  PubMed  Google Scholar 

  • Liu Z-Q, Dong L-Z, Cheng F, Xue Y-P, Wang Y-S, Ding J-V, Zheng Y-G, Shen Y-C (2011) Gene cloning, expression and characterization of a nitrilase from Alcaligenes faecalis. J Agric Food Chem 59:11560–11570

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Fan L, Chang Y, Ma J, Yu H, Shen Z (2010) Gene cloning, overexpression, and characterization of the nitrilase from Rhodococcus rhodochrous tg1-A6 in E. coli. Appl Biochem Biotechnol 160:393–400

    Article  CAS  PubMed  Google Scholar 

  • Machingura M, Salomon E, Jez JM, Ebbs SD (2016) The β-cyanoalanine synthase pathway: beyond cyanide detoxification. Plant Cell Environ 39:2329–2341

    Article  CAS  PubMed  Google Scholar 

  • Martínková L (2019) Nitrile metabolism in fungi: A review of its key enzymes nitrilases with focus on their biotechnological impact. Fungal Biol Rev. https://doi.org/10.1016/j.fbr.2018.11.002

  • Martínková L, Křen V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol 14:130–137

    Article  CAS  PubMed  Google Scholar 

  • Martínková L, Vejvoda V, Kaplan O, Kubáĉ D, Malandr A, Cantarella M, Bezouška K, Křen V (2009) Fungal nitrilases as biocatalysts: recent developments. Biotechnol Adv 27:661–670

    Article  CAS  PubMed  Google Scholar 

  • Martínková L, Rucká L, Nešvera J, Pátek M (2017) Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J Microbiol Biotechnol 33:8

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Hashimoto Y, Saitoh Y, Kumano T, Kobayashi M (2016) Development of nitrilase promoter-derived inducible vectors for Streptomyces. Biosci Biotechnol Biochem 80:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa T, Kobayashi M, Yamada H (1988) Optimum culture conditions for the production of benzonitrilase by Rhodococcus rhodochrous J1. Arch Microbiol 150:89–94

    Article  CAS  Google Scholar 

  • Nagasawa T, Mauger J, Yamada H (1990a) A novel nitrilase, arylacetonitrilase of Alcaligenes faecalis JM3. Eur J Biochem 194:765–772

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa T, Nakamura T, Yamada H (1990b) ε-Caprolactam, a new powerful inducer for the formation of Rhodococcus rhodochrous J1 nitrilase. Arch Microbiol 155:13–17

    Article  CAS  Google Scholar 

  • Nagasawa T, Wieser M, Nakamura T, Iwahara H, Yoshida T, Gekko K (2000) Nitrilase of Rhodococcus rhodochrous J1: conversion into the active form by subunit association. Eur J Biochem 267:138–144

    Article  CAS  PubMed  Google Scholar 

  • Nageshwar YVD, Sheelu G, Shambhu RR, Muluka H, Mehdi N, Malik MS, Kamal A (2011) Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A43): effect of inducers on substrate specificity. Bioprocess Biosyst Eng 34:515–523

    Article  CAS  PubMed  Google Scholar 

  • Niland P, Hühne R, Müller-Hill B (1996) How AraC interacts specifically with its target DNAs. J Mol Biol 264:667–674

    Article  CAS  PubMed  Google Scholar 

  • Novikov AD, Riabchenko LE, Leonova TE, Larikova GA, Lavrov KV, Glinskii SA, Yanenko AS (2017) Bacterial strain Alcaligenes denitrificans C-32 containing two nitrilases with different substrate specificities. Appl Biochem Microbiol 53:786–791

    Article  CAS  Google Scholar 

  • Novo C, Farnaud S, Tata R, Clemente A, Brown PR (2002) Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity. Biochem J 365:731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Reilly C, Turner PD (2003) The nitrilase family of CN hydrolyzing enzymes—a comparative study. J Appl Microbiol 95:1161–1174

    Article  CAS  PubMed  Google Scholar 

  • Pace HC, Brenner C (2001) The nitrilase superfamily: classification structure and function. Genome Biol 2:REVIEWS0001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pai O, Banoth L, Ghosh S, Chisti Y, Banerjee UC (2014) Biotransformation of 3-cyanopyridine to nicotinic acid by free and immobilized cells of recombinant Escherichia coli. Process Biochem 49:655–659

    Article  CAS  Google Scholar 

  • Patel JM (2009) Biocatalytic synthesis of atorvastatin intermediates. J Mol Catal B Enzym 61:123–128

    Article  CAS  Google Scholar 

  • Petříčková A, Veselá AB, Kaplan O, Kubáč D, Uhnáková B, Malandra A, Felsberg J, Rinágelová A, Weyrauch P, Křen V, Bezouška K, Martínková L (2012) Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Appl Microbiol Biotechnol 93:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Piotrowski M (2008) Primary or secondary? Versatile nitrilases in plant metabolism. Phytochemistry 69:2655–2667

    Article  CAS  PubMed  Google Scholar 

  • Podar M, Eads JR, Richardson TH (2005) Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study. BMC Evol Biol 5:1–13

    Article  CAS  Google Scholar 

  • Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC (2007) A propionitrile induced nitrilase of Rhodococcus sp. NDB1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol 23:345–353

    Article  CAS  Google Scholar 

  • Raczynska J, Vorgias C, Antranikian G, Rypniewski W (2010) Crystallographic structure of a thermoactive nitrilase. J Struct Biol 173:294–302

    Article  CAS  PubMed  Google Scholar 

  • Rädisch R, Chmátal M, Rucká L, Novotný P, Petrásková L, Halada P, Kotik M, Pátek M, Martínková L (2018) Overproduction and characterization of the first enzyme of a new aldoxime dehydratase family in Bradyrhizobium sp. Int J Biol Macromol 115:746–753

    Article  CAS  PubMed  Google Scholar 

  • Rezende RP, Teixeira DJC, Ferraz V, Linardi VR (2000) Metabolism of benzonitrile by Cryptococcus sp. UFMG-Y28. J Basic Microbiol 40:389–392

    Article  CAS  PubMed  Google Scholar 

  • Rhee S, Martin RG, Rosner JL, Davies DR (1998) A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional regulator. Proc Natl Acad Sci U S A 95:10413–10418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell B, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz PL, Burk MJ, Short JM (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70:2429–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogozin IB, Makarova KS, Murvaj J, Czabarka E, Wolf YI, Tatusov RL, Szekely LA, Koonin EV (2002) Connected gene neighborhoods in prokaryotic genomes. Nucleic Acids Res 30:2212–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    PubMed  PubMed Central  Google Scholar 

  • Rustler S, Stolz A (2007) Isolation and characterization of a nitrile hydrolysing acido tolerant black yeast-Exophiala oligosperma R1. Appl Microbiol Biotechnol 75:899–908

    Article  CAS  PubMed  Google Scholar 

  • Sakashita T, Hashimoto Y, Oinuma K-I, Kobayashi M (2008) Transcriptional regulation of the nitrile hydratase gene cluster in Pseudomonas chlororaphis B23. J Bacteriol 190:4210–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schϋller A, Slater AW, Norambuena T, Cifuentes JJ, Almonacid LI, Melo F (2012) Computer-based annotation of putative arac/xyls-family transcription factors of known structure but unknown function. J Biomed Biotechnol 2012:103132

    Article  CAS  Google Scholar 

  • Seffernick JL, Samanta SK, Louie TM, Wackett LP, Subramanian M (2009) Investigative mining of sequence data for novel enzymes: a case study with nitrilases. J Biotechnol 143:17–26

    Article  CAS  PubMed  Google Scholar 

  • Sharma NN, Sharma M, Bhalla TC (2011) An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. J Ind Microbiol Biotechnol 38:1235–1243

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Thakur N, Raj T, Savitri, Bhalla TC (2017) Mining of microbial genomes for the novel sources of nitrilases. BioMed Res Int 2017:7039245

    PubMed  PubMed Central  Google Scholar 

  • Sharma N, Verma R, Savitri, Bhalla TC (2018) Classifying nitrilases as aliphatic and aromatic using machine learning technique. 3 Biotech 8:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RV, Sharma H, Koul A, Babu V (2018) Exploring a broad spectrum nitrilase from moderately halophilic bacterium Halomonas sp. IIIMB2797 isolated from saline lake. J Basic Microbiol 58:876–874

    Google Scholar 

  • Sosedov O, Stolz A (2014) Random mutagenesis of the arylacetonitrilase from Pseudomonas fluorescens EBC191 and identification of variants, which form increased amounts of mandeloamide from mandelonitrile. Appl Microbiol Biotechnol 98:1595–1607

    Article  CAS  PubMed  Google Scholar 

  • Stalker DM, Malyj JD, McBride KE (1988) Purification and characterization of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide sequence analysis of the bxn gene. J Biol Chem 263:6310–6314

    CAS  PubMed  Google Scholar 

  • Stevenson DE, Feng R, Dumas F, Grolaeu D, Mihoc A, Storer AC (1992) Mechanistic and structural studies on Rhodococcus ATCC 39484 nitrilase. Biotechnol Appl Biochem 15:283–302

    CAS  PubMed  Google Scholar 

  • Sun J, Yu H, Chen J, Luo H, Shen Z (2016) Ammonium acrylate biomanufacturing by an engineered Rhodococcus ruber with nitrilase overexpression and double-knockout of nitrile hydratase and amidase. J Ind Microbiol Biotechnol 43:1631–1639

    Article  CAS  PubMed  Google Scholar 

  • Taylor CM, Wang Q, Rosa BA, Huang SC-C, Powell K, Schedl T, Pearce EJ, Abubucker S, Mitreva M (2013) Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog 9(8):e1003505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur N, Kumar V, Thakur S, Sharma N, Sheetal BT-C (2018) Biotransformation of 4-hydroxyphenylacetonitrile to 4-hydroxyphenylacetic acid using whole cell arylacetonitrilase of Alcaligenes faecalis MTCC 12629. Process Biochem 73:117–123

    Article  CAS  Google Scholar 

  • Thimann KV, Mahadevan S (1964) Nitrilase I. Occurrence, preparation and general properties of enzyme. Arch Biochem Biophys 105:133–141

    Article  CAS  PubMed  Google Scholar 

  • Thuku RN, Weber BW, Varsani A, Sewell BT (2007) Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J 274:2099–2108

    Article  CAS  PubMed  Google Scholar 

  • Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming enzymes. J Appl Microbiol 106:703–727

    Article  CAS  PubMed  Google Scholar 

  • Vejvoda V, Kaplan O, Klozová J, Masák J, Jirků ČA, Stloukal V, R. Martínková L. (2006) Mild hydrolysis of nitriles by Fusarium solani strain O1. Folia Microbiol 51:251–256

    Article  CAS  Google Scholar 

  • Vejvoda V, Kaplan O, Bezouška K, Pomach P, Šulc M, Cantarella M, Benada O, Uhnākovā B, Rināgelovā A, Wahl SL, Fischer L, Kŕen V, Martinkovā L (2008) Purification and characterization of a nitrilase from Fusarium solani O1. J Mol Catal B Enzym 50:99–106

    Article  CAS  Google Scholar 

  • Vejvoda V, Kubac D, Davidova A, Kaplan O, Sulc M, Sveda O, Chaloupkova R, Martinkova L (2010) Purification and characterization of nitrilase from Fusarium solani IMI196840. Process Biochem 45:1115–1120

    Article  CAS  Google Scholar 

  • Vergne-Vaxelaire C, Bordier F, Fossey A, Besnard-Gonnet M, Debard A, Mariage A, Pellouin V, Perret A, Petit J-L, Stam M, Salanoubat M, Weissenbach J, De Berardinis V, Zaparucha A (2013) Nitrilase activity screening on structurally diverse substrates: providing biocatalytic tools for organic synthesis. Adv Synth Catal 355:1763–1779

    Article  CAS  Google Scholar 

  • Veselá AB, Rucká L, Kaplan O, Pelantová H, Nešvera J, Pátek M, Martínková L (2016) Bringing nitrilase sequences from databases to life: the search for novel substrate specificities with a focus on dinitriles. Appl Microbiol Biotechnol 100:2193–2202

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Li G, Li M, Wei D, Wang X (2014) A novel nitrilase from Rhodobacter sphaeroides LHS-305: cloning, heterologous expression and biochemical characterization. World J Microbiol Biotechnol 30:245–252

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Ryuno K, Nagasawa T, Enomoto K, Watanabe I (1986) Optimum culture conditions for production by Pseudomonas chlororaphis B23 of nitrile hydratase. Agric Biol Chem 50:2859–2865

    CAS  Google Scholar 

  • Yamada H, Nagasawa T, Nakamura T (1991) Process for producing an elevated amount of nitrilase activity form a microbial strain of Rhodococcus. European Patent Office EP 0 444 640 B1. Filing date 27/2/1991

  • Yamamoto K, Komatsu K-I (1991) Purification and characterization of nitrilase responsible for the enantioselective hydrolysis from Acinetobacter sp. AK 226. Agric Biol Chem 55:1459–1466

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Fijimatsu I, Komatsu K (1992) Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng 73:425–430

    Article  CAS  Google Scholar 

  • Yang J, Zhang Y (2015) Protein structure and function prediction using i-TASSER. Curr Protoc Bioinformatics 52:5.8.1–5.815

    Google Scholar 

  • Yang C, Wang X, Wei D (2011) A new nitrilase-producing strain named Rhodobacter sphaeroides LHS-305. Appl Biochem Biotechnol 165:1556–1567

    Article  CAS  PubMed  Google Scholar 

  • Yusuf F, Chaubey A, Jamwal U, Parshad R (2013a) A new isolate from Fusarium proliferatum (AUF-2) for efficient nitrilase production. Appl Biochem Biotechnol 171:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Yusuf F, Chaubey A, Raina A, Jamwal U, Parshad R (2013b) Enhancing nitrilase production from Fusarium proliferatum using response surface methodology. SpringerPlus 2:1–7

    Article  CAS  Google Scholar 

  • Zhang Z-J, Xy J-H, He Y-C, Ouyang L-M, Liy Y-Y (2011) Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-(-)-mandelic acid production. Bioprocess Biosyst Eng 34:315–322

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yin B, Wang C, Jiang S, Wang H, Yuan YA, Wei D (2014) Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Synechocystis sp. PCC6803. J Struct Biol 188:93–101

    Article  CAS  PubMed  Google Scholar 

  • Zheng YG, Chen J, Liu ZQ, Wu MH, Xing LY, Shen YC (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl Microbiol Biochem 77:985–993

    CAS  Google Scholar 

  • Zhu D, Mukherjee C, Biehl ER, Hua L (2007) Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. J Biotechnol 129:645–650

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the CSIR, the University of the Witwatersrand and DST for funding and resources needed to complete this work. Financial support from the Department of Science and Technology Biocatalysis Initiative (Grant 0175/2013) was greatly appreciated.

Funding

Department of Science and Technology Biocatalysis Initiative (Grant 0175/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Brady.

Ethics declarations

Ethical approval

This literature review does not contain any studies with human participants or animals by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhiba-Govindjee, V.P., van der Westhuyzen, C.W., Bode, M.L. et al. Bacterial nitrilases and their regulation. Appl Microbiol Biotechnol 103, 4679–4692 (2019). https://doi.org/10.1007/s00253-019-09776-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09776-1

Keywords

Navigation