Application of the CRISPR/Cas system for genome editing in microalgae

  • Yu-Ting Zhang
  • Jia-Yi Jiang
  • Tian-Qiong Shi
  • Xiao-Man Sun
  • Quan-Yu Zhao
  • He Huang
  • Lu-Jing RenEmail author


Microalgae are arguably the most abundant single-celled eukaryotes and are widely distributed in oceans and freshwater lakes. Moreover, microalgae are widely used in biotechnology to produce bioenergy and high-value products such as polyunsaturated fatty acids (PUFAs), bioactive peptides, proteins, antioxidants and so on. In general, genetic editing techniques were adapted to increase the production of microalgal metabolites. The main genome editing tools available today include zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas nuclease system. Due to its high genome editing efficiency, the CRISPR/Cas system is emerging as the most important genome editing method. In this review, we summarized the available literature on the application of CRISPR/Cas in microalgal genetic engineering, including transformation methods, strategies for the expression of Cas9 and sgRNA, the CRISPR/Cas9-mediated gene knock-in/knock-out strategies, and CRISPR interference expression modification strategies.


CRISPR/Cas sgRNA Microalgae Genome editing Transformation 



This work was financially supported by the National Natural Science Foundation of China (No. 21878151), the Outstanding Youth Foundation of Jiangsu Natural Science Foundation (BK20160092), the Program for Innovative Research Teams in Universities of Jiangsu Province (2015), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTE1829), and General Program on Natural Science Research Projects of Higher Education of Jiangsu (18KJB530007).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies with human participants or experimental animals by any of the authors.


  1. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102(36):12678–12683. PubMedPubMedCentralGoogle Scholar
  2. Arad SM, Levyontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21(3):358–364PubMedGoogle Scholar
  3. Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep Uk 6:30620Google Scholar
  4. Baek K, Yu J, Jeong J, Sim SJ, Bae S, Jin E (2018) Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnol Bioeng 115(3):719–728PubMedGoogle Scholar
  5. Chris B, Allen AE, Badger JH, Jane G, Kamel J, Alan K, Uma M, Cindy M, Florian M, Otillar RP (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244Google Scholar
  6. Cleto S, Jensen JK, Wendisch VF, Lu TK (2016) Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 5(5):375–385PubMedPubMedCentralGoogle Scholar
  7. De Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi [published erratum appears in Nat Biotechnol 1998 Nov;16(11):1074]Google Scholar
  8. de Morais MG, Vaz BD, de Morais EG, Costa JAV (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int 2015:835761PubMedPubMedCentralGoogle Scholar
  9. Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74(6):1163–1174PubMedGoogle Scholar
  10. Doench JG, Ella H, Graham DB, Zuzana T, Mudra H, Ian S, Meagan S, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262–1267PubMedPubMedCentralGoogle Scholar
  11. Farasat I, Kushwaha M, Collens J, Easterbrook M, Guido M, Salis HM (2014) Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. Mol Syst Biol 10(6):731PubMedPubMedCentralGoogle Scholar
  12. Farzadfard F, Perli SD, Lu TK (2013) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol 2(10):604–613PubMedPubMedCentralGoogle Scholar
  13. Ferenczi A, Pyott DE, Xipnitou A, Molnar A (2017) Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proc Natl Acad Sci U S A 114(51):13567–13572PubMedPubMedCentralGoogle Scholar
  14. Freed EF, Winkler JD, Weiss SJ, Garst AD, Mutalik VK, Arkin AP, Knight R, Gill RT (2015) Genome-wide tuning of protein expression levels to rapidly engineer microbial traits. ACS Synth Biol 4(11):1244–1253PubMedGoogle Scholar
  15. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. PubMedPubMedCentralGoogle Scholar
  16. Gao H, Wright DA, Li T, Wang YJ, Horken K, Weeks DP, Yang B, Spalding MH (2014) TALE activation of endogenous genes in Chlamydomonas reinhardtii. Algal Res 5:52–60Google Scholar
  17. Gao YP, Wu HB, Wang YS, Liu X, Chen LL, Li Q, Cui CC, Liu X, Zhang JC, Zhang Y (2017) Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol 18:10.1186/s13059-016-1144-4Google Scholar
  18. Gordon GC, Korosh TC, Cameron JC, Markley AL, Begemann MB, Pfleger BF (2016) CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab Eng 38:170–179. PubMedPubMedCentralGoogle Scholar
  19. Guillaume B, Garry D, Irina A, Mark B, James G, Alan K, Erika L, Susan L, Jasmyn P, Juergen P (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22(9):2943–2955Google Scholar
  20. Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148PubMedPubMedCentralGoogle Scholar
  21. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122–124PubMedGoogle Scholar
  22. Hopes A, Nekrasov V, Kamoun S, Mock T (2016) Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. Plant Methods 12:49PubMedPubMedCentralGoogle Scholar
  23. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832PubMedPubMedCentralGoogle Scholar
  24. Huang CH, Shen CR, Li H, Sung LY, Wu MY, Hu YC (2016) CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S-elongatus PCC 7942. Microb Cell Factories 15:196. Google Scholar
  25. Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222PubMedGoogle Scholar
  26. Jiang WZ, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13(11):1465–1469PubMedPubMedCentralGoogle Scholar
  27. Kao PH, Ng IS (2017) CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresour Technol 245:1527–1537. PubMedGoogle Scholar
  28. Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108(52):21265–21269PubMedPubMedCentralGoogle Scholar
  29. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160PubMedPubMedCentralGoogle Scholar
  30. Kindle KL, Richards KL, Stern DB (1991) Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 88(5):1721–1725PubMedPubMedCentralGoogle Scholar
  31. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420PubMedPubMedCentralGoogle Scholar
  32. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–U332PubMedGoogle Scholar
  33. La Russa MF, Qi LS (2015) The new state of the art: Cas9 for gene activation and repression. Mol Cell Biol 35(22):3800–3809PubMedPubMedCentralGoogle Scholar
  34. Larson MH, Gilbert LA, Wang XW, Lim WA, Weissman JS, Qi LS (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8(11):2180–2196PubMedPubMedCentralGoogle Scholar
  35. Lee DW, Hwang I (2018) Evolution and design principles of the diverse chloroplast transit peptides. Mol Cells 41(3):161–167PubMedPubMedCentralGoogle Scholar
  36. Li DJ, Wang L, Zhao QY, Wei W, Sun YH (2015) Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp by adaptive laboratory evolution. Bioresour Technol 185:269–275PubMedGoogle Scholar
  37. Li H, Shen CR, Huang CH, Sung LY, Wu MY, Hu YC (2016) CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 38:293–302. PubMedGoogle Scholar
  38. Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335(6069):716–719PubMedPubMedCentralGoogle Scholar
  39. Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 5(3):402–412PubMedGoogle Scholar
  40. Markley AL, Begemann MB, Clarke RE, Gordon GC, Pfleger BF (2015) A synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. PCC 7002. ACS Synth Biol 4(5):595–603PubMedGoogle Scholar
  41. Merchant SS, Prochnik SE, Olivier V, Harris EH, Karpowicz SJ, Witman GB, Astrid T, Asaf S, Fritz-Laylin LK, Laurence MD (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250PubMedPubMedCentralGoogle Scholar
  42. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353(6299):aad5147PubMedGoogle Scholar
  43. Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87(4):1291–1301PubMedGoogle Scholar
  44. Netz N, Opatz T (2015) Marine indole alkaloids. Mar Drugs 13(8):4814–4914PubMedPubMedCentralGoogle Scholar
  45. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845PubMedPubMedCentralGoogle Scholar
  46. Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P (2016) A CRISPR/Cas9 system adapted for genome editing in marine algae. Sci Rep 6:24951. PubMedPubMedCentralGoogle Scholar
  47. Plecenikova A, Mages W, Andresson OS, Hrossova D, Valuchova S, Vlcek D, Slaninova M (2013) Studies on recombination processes in two Chlamydomonas reinhardtii endogenous genes, NIT1 and ARG7. Protist 164(4):570–82.
  48. Pliatsika V, Rigoutsos I (2015) “Off-Spotter”: very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biol Direct 10:4PubMedPubMedCentralGoogle Scholar
  49. Poliner E, Takeuchi T, Du ZY, Benning C, Farre EM (2018) Nontransgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, Nannochloropsis oceanica CCMP1779. ACS Synth Biol 7(4):962–968. PubMedGoogle Scholar
  50. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183PubMedPubMedCentralGoogle Scholar
  51. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501PubMedPubMedCentralGoogle Scholar
  52. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191PubMedPubMedCentralGoogle Scholar
  53. Ren L, Hu X, Zhao X, Chen S, Wu Y, Li D, Yu Y, Geng L, Ji X, Huang H (2017) Transcriptomic analysis of the regulation of lipid fraction migration and fatty acid biosynthesis in Schizochytrium sp. Sci Rep-Uk 7(1)Google Scholar
  54. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277PubMedGoogle Scholar
  55. Sangsu B, Jeongbin P, Jin-Soo K (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473–1475Google Scholar
  56. Schorsch C, Köhler T, Boles E (2009) Knockout of the DNA ligase IV homolog gene in the sphingoid base producing yeast Pichia ciferrii significantly increases gene targeting efficiency. Curr Genet 55(4):381–389PubMedGoogle Scholar
  57. Sergey S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Ekaterina S, Leonid M, Julia J, Silvana K, Konstantin S (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60(3):385–397Google Scholar
  58. Serif M, Lepetit B, Weissert K, Kroth PG, Bartulos CR (2017) A fast and reliable strategy to generate TALEN-mediated gene knockouts in the diatom Phaeodactylum tricornutum. Algal Res 23:186–195Google Scholar
  59. Serif M, Dubois G, Finoux AL, Teste MA, Jallet D, Daboussi F (2018) One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing. Nat Commun 9(1):3924PubMedPubMedCentralGoogle Scholar
  60. Shi TQ, Huang H, Kerkhoven EJ, Ji XJ (2018) Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system. Appl Microbiol Biotechnol 102(22):9541–9548PubMedPubMedCentralGoogle Scholar
  61. Shi TQ, Gao J, Wang WJ, Wang KF, Xu GQ, Huang H, Ji XJ (2019) CRISPR/Cas9-based genome-editing in the filamentous fungus Fusarium fujikuroi and its application in strain engineering for gibberellic acid production. ACS Synth Biol 8(2):445–454PubMedGoogle Scholar
  62. Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810. PubMedPubMedCentralGoogle Scholar
  63. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28(6):1102PubMedGoogle Scholar
  64. Sun XM, Ren LJ, Bi ZQ, Ji XJ, Zhao QY, Jiang L, Huang H (2018) Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp. Biotechnol Biofuels 11(1):65PubMedPubMedCentralGoogle Scholar
  65. Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of Cyanobacteria. Sci Rep Uk 6:39681Google Scholar
  66. Velmurugan N, Deka D (2018) Transformation techniques for metabolic engineering of diatoms and haptophytes: current state and prospects. Appl Microbiol Biotechnol 102(10):4255–4267PubMedGoogle Scholar
  67. Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88(6):1071–1081. PubMedGoogle Scholar
  68. Wang CG, Chen X, Li H, Wang JX, Hu ZL (2017) Artificial miRNA inhibition of phosphoenolpyruvate carboxylase increases fatty acid production in a green microalga Chlamydomonas reinhardtii. Biotechnol Biofuels 10:91PubMedPubMedCentralGoogle Scholar
  69. Wang LW, Trudeau SJ, Wang C, Gerdt C, Jiang S, Zhao B, Gewurz BE (2018) Modulating Gene Expression in Epstein-Barr Virus (EBV)-Positive B Cell Lines with CRISPRa and CRISPRi. Current Protocols in Molecular Biology 121:31.13.1Google Scholar
  70. Wendt KE, Ungerer J, Cobb RE, Zhao HM, Pakrasi HB (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microbial Cell Factories 15.
  71. Witte H, Moreno E, Rodelsperger C, Kim J, Kim JS, Streit A, Sommer RJ (2015) Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus. Dev Genes Evol 225(1):55–62PubMedGoogle Scholar
  72. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9(8):1251–1261PubMedPubMedCentralGoogle Scholar
  73. Xie XR, Ma XL, Zhu QL, Zeng DC, Li GS, Liu YG (2017) CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant 10(9):1246–1249PubMedGoogle Scholar
  74. Yao L, Cengic I, Anfelt J, Hudson EP (2016) Multiple gene repression in Cyanobacteria using CRISPRi. ACS Synth Biol 5(3):207–212. PubMedGoogle Scholar
  75. Yi H, Liu Q, Shao Y, Chen F (2013) Erratum to: ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Appl Microbiol Biotechnol 97(11):5175–5176Google Scholar
  76. Yuan Y, Liu H, Li X, Qi W, Cheng D, Tang T, Zhao Q, Wei W, Sun Y (2017) Enhancing carbohydrate productivity of Chlorella sp. AE10 in semi-continuous cultivation and unraveling the mechanism by flow cytometry. Appl Biochem Biotechnol (10):1–15Google Scholar
  77. Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, Deng Z, Sun Y (2015) Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA (sm) combined system. Appl Microbiol Biotechnol 99(24):10575–10585PubMedGoogle Scholar
  78. Zheng H, Zhen G, Yin J, Tang X, Ji X, He H (2012) Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour Technol 112:212–220PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu-Ting Zhang
    • 1
  • Jia-Yi Jiang
    • 1
  • Tian-Qiong Shi
    • 1
  • Xiao-Man Sun
    • 1
  • Quan-Yu Zhao
    • 1
    • 2
  • He Huang
    • 2
    • 3
    • 4
    • 5
  • Lu-Jing Ren
    • 1
    • 2
    Email author
  1. 1.College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)NanjingPeople’s Republic of China
  3. 3.School of Pharmaceutical SciencesNanjing Tech UniversityNanjingPeople’s Republic of China
  4. 4.State Key Laboratory of Materials-Oriented Chemical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  5. 5.School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjingPeople’s Republic of China

Personalised recommendations