Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 8, pp 3265–3276 | Cite as

Melittin: from honeybees to superbugs

  • Hamed Memariani
  • Mojtaba MemarianiEmail author
  • Mohammad Shahidi-Dadras
  • Soheila Nasiri
  • Maziar Mohammad Akhavan
  • Hamideh MoravvejEmail author
Mini-Review
  • 184 Downloads

Abstract

The emergence of antibiotic-resistant bacteria, dubbed superbugs, together with relative stagnation in developing efficient antibiotics has led to enormous health and economic problems, necessitating the need for discovering and developing novel antimicrobial agents. In this respect, animal venoms represent a rich repertoire of pharmacologically active components. As a major component in the venom of European honeybee Apis mellifera, melittin has a great potential in medical applications. In this mini-review, we summarize a multitude of studies on anti-bacterial effects of melittin against planktonic and biofilm-embedded bacteria. Several investigations regarding synergistic effects between melittin and antibiotics were also described. On the whole, the properties of melittin can open up new horizons in a range of biomedical areas, from agriculture to veterinary and clinical microbiology.

Keywords

Venom Bee Melittin Anti-bacterial activity Biofilm Antibiotic 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Al-Ani I, Zimmermann S, Reichling J, Wink M (2015) Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine 22(2):245–255.  https://doi.org/10.1016/j.phymed.2014.11.019 Google Scholar
  2. Almeida JR, Palacios ALV, Patiño RSP, Mendes B, Teixeira CAS, Gomes P, da Silva SL (2018) Harnessing snake venom phospholipases A2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res.  https://doi.org/10.1002/ddr.21456
  3. An HJ, Kim JY, Kim WH, Gwon MG, Gu HM, Jeon MJ, Han SM, Pak SC, Lee CK, Park IS, Park KK (2018) Therapeutic effects of bee venom and its major component, melittin, on atopic dermatitis in vivo and in vitro. Br J Pharmacol 175(23):4310–4324.  https://doi.org/10.1111/bph.14487 Google Scholar
  4. Anderson D, Terwilliger TC, Wickner W, Eisenberg D (1980) Melittin forms crystals which are suitable for high resolution X-ray structural analysis and which reveal a molecular 2-fold axis of symmetry. J Biol Chem 255(6):2578–2582Google Scholar
  5. Andreotti N, Jouirou B, Mouhat S, Mouhat L, Sabatier J (2010) Therapeutic value of peptides from animal venoms. In: Mandler L, Liu HW (eds) Comprehensive natural products II. Elsevier, Oxford, pp 287–303Google Scholar
  6. Bardbari AM, Arabestani MR, Karami M, Keramat F, Aghazadeh H, Alikhani MY, Bagheri KP (2018) Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 37(3):443–454.  https://doi.org/10.1007/s10096-018-3189-7 Google Scholar
  7. Batoni G, Maisetta G, Esin S (2016) Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim Biophys Acta 1858(5):1044–1060.  https://doi.org/10.1016/j.bbamem.2015.10.013 Google Scholar
  8. Bazzo R, Tappin MJ, Pastore A, Harvey TS, Carver JA, Campbell ID (1988) The structure of melittin. A 1H-NMR study in methanol. Eur J Biochem 173(1):139–146.  https://doi.org/10.1111/j.1432-1033.1988.tb13977.x Google Scholar
  9. Benton AW, Morse RA, Kosikowski FV (1963) Bioassay and standardization of venom of the honey bee. Nature 198:295–296.  https://doi.org/10.1038/198295b0 Google Scholar
  10. Béven L, Wróblewski H (1997) Effect of natural amphipathic peptides on viability, membrane potential, cell shape and motility of mollicutes. Res Microbiol 148(2):163–175.  https://doi.org/10.1016/S0923-2508(97)87647-4 Google Scholar
  11. Björn C, Noppa L, Näslund Salomonsson E, Johansson AL, Nilsson E, Mahlapuu M, Håkansson J (2015) Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds. Int J Antimicrob Agents 45(5):519–524.  https://doi.org/10.1016/j.ijantimicag.2014.12.015 Google Scholar
  12. Blondelle SE, Houghten RA (1991) Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30(19):4671–4678.  https://doi.org/10.1021/bi00233a006 Google Scholar
  13. Boman HG, Wade D, Boman IA, Wåhlin B, Merrifield RB (1989) Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett 259(1):103–106.  https://doi.org/10.1016/0014-5793(89)81505-4 Google Scholar
  14. Bucki R, Pastore JJ, Randhawa P, Vegners R, Weiner DJ, Janmey PA (2004) Antibacterial activities of rhodamine B-conjugated gelsolin-derived peptides compared to those of the antimicrobial peptides cathelicidin LL37, magainin II, and melittin. Antimicrob Agents Chemother 48(5):1526–1533.  https://doi.org/10.1128/AAC.48.5.1526-1533.2004 Google Scholar
  15. Cerovský V, Hovorka O, Cvacka J, Voburka Z, Bednárová L, Borovicková L, Slaninová J, Fucík V (2008) Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. Chembiochem 9(17):2815–2821.  https://doi.org/10.1002/cbic.200800476 Google Scholar
  16. Choi JH, Jang AY, Lin S, Lim S, Kim D, Park K, Han SM, Yeo JH, Seo HS (2015) Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol Med Rep 12(5):6483–6490.  https://doi.org/10.3892/mmr.2015.4275 Google Scholar
  17. Deslouches B, Steckbeck JD, Craigo JK, Doi Y, Burns JL, Montelaro RC (2015) Engineered cationic antimicrobial peptides to overcome multidrug resistance by ESKAPE pathogens. Antimicrob Agents Chemother 59(2):1329–1333.  https://doi.org/10.1128/AAC.03937-14 Google Scholar
  18. Dorman LC, Markley LD (1971) Solid phase synthesis and antibacterial activity of N-terminal sequences of melittin. J Med Chem 14(1):5–9.  https://doi.org/10.1021/jm00283a003 Google Scholar
  19. Dosler S, Gerceker AA (2012) In vitro activities of antimicrobial cationic peptides; melittin and nisin, alone or in combination with antibiotics against Gram-positive bacteria. J Chemother 24(3):137–143.  https://doi.org/10.1179/1973947812Y.0000000007 Google Scholar
  20. Dosler S, Karaaslan E, Alev Gerceker A (2016) Antibacterial and anti-biofilm activities of melittin and colistin, alone and in combination with antibiotics against gram-negative bacteria. J Chemother 28(2):95–103.  https://doi.org/10.1179/1973947815Y.0000000004 Google Scholar
  21. Ebbensgaard A, Mordhorst H, Overgaard MT, Nielsen CG, Aarestrup FM, Hansen EB (2015) Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic bacteria. PLoS One 10(12):e0144611.  https://doi.org/10.1371/journal.pone.0144611 Google Scholar
  22. Fennell JF, Shipman WH, Cole LJ (1967) Antibacterial action of a bee venom fraction (melittin) against a penicillin-resistant Staphylococcus and other microorganisms. USNRDL-TR-67-101. Res Dev Tech Rep 5:1–13Google Scholar
  23. Gajski G, Garaj-Vrhovac V (2013) Melittin: a lytic peptide with anticancer properties. Environ Toxicol Pharmacol 36(2):697–705.  https://doi.org/10.1016/j.etap.2013.06.009 Google Scholar
  24. George S, Kishen A, Song KP (2005) The role of environmental changes on monospecies biofilm formation on root canal wall by Enterococcus faecalis. J Endod 31(12):867–872.  https://doi.org/10.1097/01.don.0000164855.98346.fc Google Scholar
  25. Giacometti A, Cirioni O, Kamysz W, D'Amato G, Silvestri C, Del Prete MS, Lukasiak J, Scalise G (2003) Comparative activities of cecropin A, melittin, and cecropin A-melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides 24(9):1315–1318.  https://doi.org/10.1016/j.peptides.2003.08.003 Google Scholar
  26. González-Rodríguez MÁ, Silva-Rojas HV, Mascorro-Gallardo JO (2005) In vitro assay of the antimicrobial peptide melittin against different phytopathogenic bacteria (article in Spanish). Rev Mex Fitopatol 23(2):176–182Google Scholar
  27. Gopal R, Lee JH, Kim YG, Kim MS, Seo CH, Park Y (2013) Anti-microbial, anti-biofilm activities and cell selectivity of the NRC-16 peptide derived from witch flounder, Glyptocephalus cynoglossus. Mar Drugs 11(6):1836–1852.  https://doi.org/10.3390/md11061836 Google Scholar
  28. Haagensen JA, Verotta D, Huang L, Spormann A, Yang K (2015) New in vitro model to study the effect of human simulated antibiotic concentrations on bacterial biofilms. Antimicrob Agents Chemother 59(7):4074–4081.  https://doi.org/10.1128/AAC.05037-14 Google Scholar
  29. Habermann E (1972) Bee and wasp venoms. Science 177(4046):314–322.  https://doi.org/10.1126/science.177.4046.314 Google Scholar
  30. Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti-Infect Ther 5(6):951–959.  https://doi.org/10.1586/14787210.5.6.951 Google Scholar
  31. Han S, Yeo J, Baek H, Lin SM, Meyer S, Molan P (2009) Postantibiotic effect of purified melittin from honeybee (Apis mellifera) venom against Escherichia coli and Staphylococcus aureus. J Asian Nat Prod Res 11(9):796–804.  https://doi.org/10.1080/10286020903164277 Google Scholar
  32. Hider RC (1988) Honeybee venom: a rich source of pharmacologically active peptides. Endeavour 12(2):60–65.  https://doi.org/10.1016/0160-9327(88)90082-8 Google Scholar
  33. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332.  https://doi.org/10.1016/j.ijantimicag.2009.12.011 Google Scholar
  34. Hossen S, Gan SH, Khalil I (2017) Melittin, a potential natural toxin of crude bee venom: probable future arsenal in the treatment of diabetes mellitus. J Chem 2017:1–7.  https://doi.org/10.1155/2017/4035626 Google Scholar
  35. Kawakami H, Goto SG, Murata K, Matsuda H, Shigeri Y, Imura T, Inagaki H, Shinada T (2017) Isolation of biologically active peptides from the venom of Japanese carpenter bee, Xylocopa appendiculata. J Venom Anim Toxins Incl Trop Dis 23:29.  https://doi.org/10.1186/s40409-017-0119-6 Google Scholar
  36. Khozani RS, Shahbazzadeh D, Harzandi N, Feizabadi MM, Bagheri KP (2018) Kinetics study of antimicrobial peptide, melittin, in simultaneous biofilm degradation and eradication of potent biofilm producing MDR Pseudomonas aeruginosa isolates. Int J Pept Res Ther 25:329–338.  https://doi.org/10.1007/s10989-018-9675-z Google Scholar
  37. Kim IH, Lee DG, Le SH, Ha JM, Ha BJ, Kim SK, Lee JH (2007) Antibacterial activity of Ulva lactuta against methicillin-resistant Staphylococcus aureus (MRSA). Biotechnol Bioproc Engg 12:579–582.  https://doi.org/10.1007/BF02931358 Google Scholar
  38. King GF (2011) Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 11(11):1469–1484.  https://doi.org/10.1517/14712598.2011.621940 Google Scholar
  39. Lam YH, Wassall SR, Morton CJ, Smith R, Separovic F (2001) Solid-state NMR structure determination of melittin in a lipid environment. Biophys J 81(5):2752–2761.  https://doi.org/10.1016/S0006-3495(01)75918-8 Google Scholar
  40. Lazarev VN, Parfenova TM, Gularyan SK, Misyurina OY, Akopian TA, Govorun VM (2002) Induced expression of melittin, an antimicrobial peptide, inhibits infection by Chlamydia trachomatis and Mycoplasma hominis in a HeLa cell line. Int J Antimicrob Agents 19(2):133–137.  https://doi.org/10.1016/S0924-8579(01)00479-4 Google Scholar
  41. Lazarev VN, Stipkovits L, Biro J, Miklodi D, Shkarupeta MM, Titova GA, Akopian TA, Govorun VM (2004) Induced expression of the antimicrobial peptide melittin inhibits experimental infection by Mycoplasma gallisepticum in chickens. Microbes Infect 6(6):536–541.  https://doi.org/10.1016/j.micinf.2004.02.006 Google Scholar
  42. Lazarev VN, Shkarupeta MM, Kostryukova ES, Levitskii SA, Titova GA, Akopian TA, Govorun VM (2007) Recombinant plasmid constructs expressing gene for antimicrobial peptide melittin for the therapy of Mycoplasma and Chlamydia infections. Bull Exp Biol Med 144(3):452–456.  https://doi.org/10.1007/s10517-007-0350-1
  43. Leandro LF, Mendes CA, Casemiro LA, Vinholis AH, Cunha WR, de Almeida R, Martins CH (2015) Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens. An Acad Bras Cienc 87(1):147–155.  https://doi.org/10.1590/0001-3765201520130511 Google Scholar
  44. Lee G, Bae H (2016) Anti-inflammatory applications of melittin, a major component of bee venom: detailed mechanism of action and adverse effects. Molecules 21(5):616.  https://doi.org/10.3390/molecules21050616 Google Scholar
  45. Lee MT, Sun TL, Hung WC, Huang HW (2013) Process of inducing pores in membranes by melittin. Proc Natl Acad Sci U S A 110(35):14243–14248.  https://doi.org/10.1073/pnas.1307010110 Google Scholar
  46. Lee WR, Kim KH, An HJ, Kim JY, Chang YC, Chung H, Park YY, Lee ML, Park KK (2014) The protective effects of melittin on Propionibacterium acnes-induced inflammatory responses in vitro and in vivo. J Invest Dermatol 134(7):1922–1930.  https://doi.org/10.1038/jid.2014.75 Google Scholar
  47. Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2(10):790–802.  https://doi.org/10.1038/nrd1197 Google Scholar
  48. Lubke LL, Garon CF (1997) The antimicrobial agent melittin exhibits powerful in vitro inhibitory effects on the Lyme disease spirochete. Clin Infect Dis 25(Suppl 1):S48–S51.  https://doi.org/10.1086/516165 Google Scholar
  49. Macià MD, Rojo-Molinero E, Oliver A (2014) Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 20(10):981–990.  https://doi.org/10.1111/1469-0691.12651 Google Scholar
  50. Matsuzaki K, Yoneyama S, Miyajima K (1997) Pore formation and translocation of melittin. Biophys J 73(2):831–838.  https://doi.org/10.1016/S0006-3495(97)78115-3 Google Scholar
  51. Memariani H, Shahbazzadeh D, Sabatier JM, Memariani M, Karbalaeimahdi A, Bagheri KP (2016) Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa. Biochem Biophys Res Commun 479(1):103–108.  https://doi.org/10.1016/j.bbrc.2016.09.045 Google Scholar
  52. Memariani H, Shahbazzadeh D, Ranjbar R, Behdani M, Memariani M, Pooshang Bagheri K (2017) Design and characterization of short hybrid antimicrobial peptides from pEM-2, mastoparan-VT1, and mastoparan-B. Chem Biol Drug Des 89(3):327–338.  https://doi.org/10.1111/cbdd.12864 Google Scholar
  53. Memariani H, Shahbazzadeh D, Sabatier JM, Pooshang Bagheri K (2018a) Membrane-active peptide PV3 efficiently eradicates multidrug-resistant Pseudomonas aeruginosa in a mouse model of burn infection. APMIS 126(2):114–122.  https://doi.org/10.1111/apm.12791 Google Scholar
  54. Memariani H, Memariani M, Pourmand MR (2018b) Venom-derived peptide Mastoparan-1 eradicates planktonic and biofilm-embedded methicillin-resistant Staphylococcus aureus isolates. Microb Pathog 119:72–80.  https://doi.org/10.1016/j.micpath.2018.04.008 Google Scholar
  55. Moerman L, Bosteels S, Noppe W, Willems J, Clynen E, Schoofs L, Thevissen K, Tytgat J, Van Eldere J, Van Der Walt J, Verdonck F (2002) Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem 269(19):4799–4810.  https://doi.org/10.1046/j.1432-1033.2002.03177.x Google Scholar
  56. Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN (2017) Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate. Biochim Biophys Acta Gen Subj 1861(4):848–859.  https://doi.org/10.1016/j.bbagen.2017.01.029 Google Scholar
  57. Monincová L, Veverka V, Slaninová J, Buděšínský M, Fučík V, Bednárová L, Straka J, Ceřovský V (2014) Structure-activity study of macropin, a novel antimicrobial peptide from the venom of solitary bee Macropis fulvipes (Hymenoptera: Melittidae). J Pept Sci 20(6):375–384.  https://doi.org/10.1002/psc.2625 Google Scholar
  58. Nešuta O, Hexnerová R, Buděšínský M, Slaninová J, Bednárová L, Hadravová R, Straka J, Veverka V, Čeřovský V (2016) Antimicrobial peptide from the wild bee Hylaeus signatus venom and its analogues: structure-activity study and synergistic effect with antibiotics. J Nat Prod 79(4):1073–1083.  https://doi.org/10.1021/acs.jnatprod.5b01129 Google Scholar
  59. Neumann W, Habermann E, Amend G (1952) Zur papierelektrophoretischen fraktionierung tierischer gifte. Naturwissenschaften 39(12):286–287.  https://doi.org/10.1007/BF00591257 Google Scholar
  60. O'Neill J (2016) Tackling drug-resistant infections globally: Final report and recommendations. Wellcome Trust and HM Govt. http://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf. Accessed 10 Oct 2018
  61. Oren Z, Shai Y (1996) A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem 237(1):303–310.  https://doi.org/10.1111/j.1432-1033.1996.0303n.x Google Scholar
  62. Oršolić N (2012) Bee venom in cancer therapy. Cancer Metastasis Rev 31(1–2):173–194.  https://doi.org/10.1007/s10555-011-9339-3 Google Scholar
  63. Ortel S, Markwardt F (1955) Studies on the antibacterial properties of bee venom. [article in German]. Pharmazie 10(12):743–746Google Scholar
  64. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76(9):4176–4182.  https://doi.org/10.1128/IAI.00318-08 Google Scholar
  65. Pandey BK, Ahmad A, Asthana N, Azmi S, Srivastava RM, Srivastava S, Verma R, Vishwakarma AL, Ghosh JK (2010) Cell-selective lysis by novel analogues of melittin against human red blood cells and Escherichia coli. Biochemistry 49(36):7920–7929.  https://doi.org/10.1021/bi100729m Google Scholar
  66. Park SC, Kim JY, Shin SO, Jeong CY, Kim MH, Shin SY, Cheong GW, Park Y, Hahm KS (2006) Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy. Biochem Biophys Res Commun 343(1):222–228.  https://doi.org/10.1016/j.bbrc.2006.02.090 Google Scholar
  67. Pashaei F, Bevalian P, Akbari R, Pooshang Bagheri K (2019) Single dose eradication of extensively drug resistant Acinetobacter spp. in a mouse model of burn infection by melittin antimicrobial peptide. Microb Pathog 127:60–69.  https://doi.org/10.1016/j.micpath.2018.11.055 Google Scholar
  68. Paull BR, Yunginger JW, Gleich GJ (1977) Melittin: an allergen of honeybee venom. J Allergy Clin Immunol 59(4):334–338Google Scholar
  69. Pennington MW, Czerwinski A, Norton RS (2018) Peptide therapeutics from venom: current status and potential. Bioorg Med Chem 26(10):2738–2758.  https://doi.org/10.1016/j.bmc.2017.09.029 Google Scholar
  70. Picoli T, Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, Vargas GDÁ, Hübner SO, Fischer G (2017) Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microb Pathog 112:57–62.  https://doi.org/10.1016/j.micpath.2017.09.046 Google Scholar
  71. Piers KL, Brown MH, Hancock RE (1994) Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother 38(10):2311–2316.  https://doi.org/10.1128/AAC.38.10.2311 Google Scholar
  72. Rady I, Siddiqui IA, Rady M, Mukhtar H (2017) Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett 402:16–31.  https://doi.org/10.1016/j.canlet.2017.05.010 Google Scholar
  73. Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27(4–5):189–223.  https://doi.org/10.1007/s10540-006-9030-z Google Scholar
  74. Rajabnejad SH, Mokhtarzadeh A, Abnous K, Taghdisi SM, Ramezani M, Razavi BM (2018) Targeted delivery of melittin to cancer cells by AS1411 anti-nucleolin aptamer. Drug Dev Ind Pharm 44(6):982–987.  https://doi.org/10.1172/JCI38842 Google Scholar
  75. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197(8):1079–1081.  https://doi.org/10.1086/533452 Google Scholar
  76. Sabatier JM (2011) Animal venoms: from deadly arsenals (toxins) to therapeutic drug candidates. Inflamm Allergy Drug Targets 10(5):312.  https://doi.org/10.2174/187152811797200632 Google Scholar
  77. Schmidt-Lange W (1941) The germicidal effect of bee venom. Muench Med Wochenschr 83:935Google Scholar
  78. Shi W, Li C, Li M, Zong X, Han D, Chen Y (2016) Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Appl Microbiol Biotechnol 100(11):5059–5067.  https://doi.org/10.1007/s00253-016-7400-4 Google Scholar
  79. Silva JP, Dhall S, Garcia M, Chan A, Costa C, Gama M, Martins-Green M (2015) Improved burn wound healing by the antimicrobial peptide LLKKK18 released from conjugates with dextrin embedded in a carbopol gel. Acta Biomater 26:249–262.  https://doi.org/10.1016/j.actbio.2015.07.043 Google Scholar
  80. Smith R, Separovic F, Milne TJ, Whittaker A, Bennett FM, Cornell BA, Makriyannis A (1994) Structure and orientation of the pore-forming peptide, melittin, in lipid bilayers. J Mol Biol 241(3):456–466.  https://doi.org/10.1006/jmbi.1994.1520 Google Scholar
  81. Socarras KM, Theophilus PAS, Torres JP, Gupta K, Sapi E (2017) Antimicrobial activity of bee venom and melittin against Borrelia burgdorferi. Antibiotics (Basel) 6(4).  https://doi.org/10.3390/antibiotics6040031
  82. Soman NR, Baldwin SL, Hu G, Marsh JN, Lanza GM, Heuser JE, Arbeit JM, Wickline SA, Schlesinger PH (2009) Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest 119(9):2830–2842.  https://doi.org/10.1172/JCI38842 Google Scholar
  83. Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT (2007) Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 115(2):246–270.  https://doi.org/10.1016/j.pharmthera.2007.04.004 Google Scholar
  84. Steiner H, Hultmark D, Engström A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292(5820):246–248.  https://doi.org/10.1038/292246a0 Google Scholar
  85. Stocker JF (1984) Studies of the action of venom and venom constituents on Escherichia coli. Dissertation, Loughborough University. https://dspace.lboro.ac.uk/2134/25899 (Accessed on December 05, 2018)
  86. Tacón A (2016) Melittin and cancer. J Apither 1(2):51–54.  https://doi.org/10.5455/ja.20161027091813 Google Scholar
  87. Terwilliger TC, Eisenberg D (1982) The structure of melittin. II. Interpretation of the structure. J Biol Chem 257(11):6016–6022Google Scholar
  88. van den Bogaart G, Guzmán JV, Mika JT, Poolman B (2008) On the mechanism of pore formation by melittin. J Biol Chem 283(49):33854–33857.  https://doi.org/10.1074/jbc.M805171200 Google Scholar
  89. Varanda EA, Tavares DC (1998) Radioprotection: mechanism and radioprotective agents including honey bee venom. Venom Anim Toxins 4(1):5–21.  https://doi.org/10.1590/S0104-79301998000100002 Google Scholar
  90. Varanda EA, Monti R, Tavares DC (1999) Inhibitory effect of propolis and bee venom on the mutagenicity of some direct- and indirect-acting mutagens. Teratog Carcinog Mutagen 19(6):403–413.  https://doi.org/10.1002/(SICI)1520-6866(1999)19:6<403::AID-TCM4>3.0.CO;2-2 Google Scholar
  91. Wade D, Andreu D, Mitchell SA, Silveira AM, Boman A, Boman HG, Merrifield RB (1992) Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res 40(5):429–436.  https://doi.org/10.1111/j.1399-3011.1992.tb00321.x Google Scholar
  92. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81(3):1475–1485.  https://doi.org/10.1016/S0006-3495(01)75802-X Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Skin Research CenterShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations