Applied Microbiology and Biotechnology

, Volume 103, Issue 5, pp 2121–2131 | Cite as

Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy

  • Aa Haeruman Azam
  • Yasunori TanjiEmail author


Due to a constant attack by phage, bacteria in the environment have evolved diverse mechanisms to defend themselves. Several reviews on phage resistance mechanisms have been published elsewhere. Thanks to the advancement of molecular techniques, several new phage resistance mechanisms were recently identified. For the practical phage therapy, the emergence of phage-resistant bacteria could be an obstacle. However, unlike antibiotic, phages could evolve a mechanism to counter-adapt against phage-resistant bacteria. In this review, we summarized the most recent studies of the phage-bacteria arm race with the perspective of future applications of phages as antimicrobial agents.


Phage therapy Phage-bacteria arm race Coevolution Phage resistance mechanism 



The authors would like to thank all members of Tanji laboratory for their useful discussion during weekly seminar.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of the authors.


  1. Ali Y, Koberg S, Heßner S, Sun X, Rabe B, Back A, Neve H, Heller KJ (2014) Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front Microbiol 5:98. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, Kot W, Hansen LH, Enright MC, Jenkins ATA (2014) Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol 80:6694–6703. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Azam AH, Hoshiga F, Takeuchi I, Miyanaga K, Tanji Y (2018) Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ɸSA012 and ɸSA039. Appl Microbiol Biotechnol 102(20):8963–8977CrossRefPubMedGoogle Scholar
  4. Baker AE, O’Toole GA (2017) Bacteria, rev your engines: stator dynamics regulate flagellar motility. J Bacteriol 199:12. CrossRefGoogle Scholar
  5. Barrangou R, Van Der Oost J (2018) Mining for novel bacterial defence systems. Nat Microbiol 3:535–536CrossRefPubMedGoogle Scholar
  6. Bebeacua C, Lorenzo Fajardo JC, Blangy S, Spinelli S, Bollmann S, Neve H, Cambillau C, Heller KJ (2013) X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target. Mol Microbiol 89:152–165. CrossRefPubMedGoogle Scholar
  7. Bertozzi Silva J, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363:4CrossRefGoogle Scholar
  8. Blair DF, Berg HC (1990) The MotA protein of Escherichia coli is a proton-conducting component of the flagellar motor. Cell 60:439–449. CrossRefPubMedGoogle Scholar
  9. Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR (2015) Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526:136–139. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR (2013) Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–432. CrossRefPubMedGoogle Scholar
  11. Brussow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bugla-Płoskońska G, Futoma-Kołoch B, Doroszkiewicz W (2007) Role of outer membrane proteins of gram-negative bacteria in interaction with human organism. Postep Mikrobiol 46:139–152Google Scholar
  13. Capparelli R, Nocerino N, Iannaccone M, Ercolini D, Parlato M, Chiara M, Iannelli D (2010a) Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J Infect Dis 201:52–61. CrossRefPubMedGoogle Scholar
  14. Capparelli R, Nocerino N, Lanzetta R, Silipo A, Amoresano A, Giangrande C, Becker K, Blaiotta G, Evidente A, Cimmino A, Iannaccone M, Parlato M, Medaglia C, Roperto S, Roperto F, Ramunno L, Iannelli D (2010b) Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS One 5(7):e11720. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carpena N, Manning KA, Dokland T, Marina A, Penadés JR (2016) Convergent evolution of pathogenicity islands in helper cos phage interference. Philos Trans R Soc B Biol Sci 371:1707. CrossRefGoogle Scholar
  16. Castillo D, Christiansen RH, Dalsgaard I, Madsen L, Middelboe M (2015) Bacteriophage resistance mechanisms in the fish pathogen Flavobacterium psychrophilum: linking genomic mutations to changes in bacterial virulence factors. Appl Environ Microbiol 81:1157–1167. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783CrossRefPubMedGoogle Scholar
  18. Chaudhary K (2018) BacteRiophage EXclusion (BREX): a novel anti-phage mechanism in the arsenal of bacterial defense system. J Cell Physiol 233:771–773CrossRefPubMedGoogle Scholar
  19. Chen W, Zhang Y, Yeo WS, Bae T, Ji Q (2017) Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system. J Am Chem Soc 139:3790–3795. CrossRefPubMedGoogle Scholar
  20. Chinenova TA, Mkrtumian NM, Lomovskaia ND (1982) Genetic characteristics of a new phage resistance trait in Streptomyces coelicolor A3(2). Genetika 18:1945–1952Google Scholar
  21. Denes T, Den Bakker HC, Tokman JI, Guldimann C, Wiedmann M (2015) Selection and characterization of phage-resistant mutant strains of Listeria monocytogenes reveal host genes linked to phage adsorption. Appl Environ Microbiol 81:4295–4305. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400. CrossRefPubMedGoogle Scholar
  23. Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R (2018) Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359(6379):eaar4120. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dy RL, Przybilski R, Semeijn K, Salmond GPC, Fineran PC (2014) A widespread bacteriophage abortive infection system functions through a type IV toxin-antitoxin mechanism. Nucleic Acids Res 42:4590–4605. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Emond E, Dion E, Walker SA, Vedamuthu ER, Kondo JK, Moineau S (1998) AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl Environ Microbiol 64:4748–4756PubMedPubMedCentralGoogle Scholar
  26. Fischer CR, Yoichi M, Unno H, Tanji Y (2004) The coexistence of Escherichia coli serotype O157:H7 and its specific bacteriophage in continuous culture. FEMS Microbiol Lett 241:171–177. CrossRefPubMedGoogle Scholar
  27. Godde JS, Bickerton A (2006) The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol 62:718–729. CrossRefPubMedGoogle Scholar
  28. Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, Afik S, Ofir G, Sorek R (2015) BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 34:169–183. CrossRefPubMedGoogle Scholar
  29. Grenier D, Belanger M (1991) Protective effect of Porphyromonas gingivalis outer membrane vesicles against bactericidal activity of human serum. Infect Immun 59:3004–3008PubMedPubMedCentralGoogle Scholar
  30. Grenier D, Bertrand J, Mayrand D (1995) Porphyromonas gingivalis outer membrane vesicles promote bacterial resistance to chlorhexidine. Oral Microbiol Immunol 10:319–320. CrossRefPubMedGoogle Scholar
  31. Hosking ER, Vogt C, Bakker EP, Manson MD (2006) The Escherichia coli MotAB proton channel unplugged. J Mol Biol 364:921–937. CrossRefPubMedGoogle Scholar
  32. Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248CrossRefPubMedGoogle Scholar
  33. Hynes AP, Rousseau GM, Agudelo D, Goulet A, Amigues B, Loehr J, Romero DA, Fremaux C, Horvath P, Doyon Y, Cambillau C, Moineau S (2018) Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat Commun 9(1):2919. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Iwano H, Inoue Y, Takasago T, Kobayashi H, Furusawa T, Taniguchi K, Fujiki J, Yokota H, Usui M, Tanji Y, Hagiwara K, Higuchi H, Tamura Y (2018) Bacteriophage ΦSA012 has a broad host range against staphylococcus aureus and effective lytic capacity in a mouse mastitis model. Biology (Basel) 7:8.
  35. Khawaldeh A, Morales S, Dillon B, Alavidze Z, Ginn AN, Thomas L, Chapman SJ, Dublanchet A, Smithyman A, Iredell JR (2011) Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J Med Microbiol 60:1697–1700CrossRefPubMedGoogle Scholar
  36. Kim MS, Kim YD, Hong SS, Park K, Ko KS, Myung H (2015) Phage-encoded colanic acid-degrading enzyme permits lytic phage: infection of a capsule-forming resistant mutant Escherichia coli strain. Appl Environ Microbiol 81:900–909. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Koebnik R, Locher KP, Van Gelder P (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37:239–253CrossRefPubMedGoogle Scholar
  38. Kulkarni HM, Jagannadham MV (2014) Biogenesis and multifaceted roles of outer membrane vesicles from gram-negative bacteria. Microbiology 160:2109–2121CrossRefPubMedGoogle Scholar
  39. Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kumaran D, Taha M, Yi QL, Ramirez-Arcos S, Diallo JS, Carli A, Abdelbary H (2018) Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Front Microbiol 9:127. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Labrie SJ, Moineau S (2007) Abortive infection mechanisms and prophage sequences significantly influence the genetic makeup of emerging lytic lactococcal phages. J Bacteriol 189:1482–1487CrossRefPubMedGoogle Scholar
  42. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327CrossRefPubMedGoogle Scholar
  43. Landsberger M, Gandon S, Meaden S, Buckling A, Westra ER, Van S, Correspondence H, Rollie C, Chevallereau A, Lè Ne Chabas H, Van Houte S (2018) Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174:908–916. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Levin BR, Moineau S, Bushman M, Barrangou R (2013) The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLoS Genet 9:e1003312. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Li X, Gerlach D, Du X, Larsen J, Stegger M, Kuhner P, Peschel A, Xia G, Winstel V (2015) An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae. Sci Rep 5:17219. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Li X, Koç C, Kühner P, Stierhof Y-D, Krismer B, Enright MC, Penadés JR, Wolz C, Stehle T, Cambillau C, Peschel A, Xia G (2016) An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Nat Publ Group 6:26455. Google Scholar
  47. Lindsay JA (2010) Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol 300:98–103CrossRefPubMedGoogle Scholar
  48. Łobocka M, Hejnowicz MS, Dabrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dabrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Głowacka A (2012) Genomics of staphylococcal Twort-like phages—potential therapeutics of the post-antibiotic era. Adv Virus Res 83:143–216. CrossRefPubMedGoogle Scholar
  49. Lu M, Henning U (1989) The immunity (imm) gene of Escherichia coli bacteriophage T4. J Virol 63:3472–3478PubMedPubMedCentralGoogle Scholar
  50. Maciejewska B, Olszak T, Drulis-Kawa Z (2018) Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol 102:2563–2581CrossRefPubMedPubMedCentralGoogle Scholar
  51. Makarova KS, Wolf YI, Koonin EV (2013) Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 41:4360–4377. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Makarova KS, Wolf YI, van der Oost J, Koonin EV (2009) Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct 4:29. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Manning AJ, Kuehn MJ (2011) Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 11:258. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Martínez-Rubio R, Quiles-Puchalt N, Martí M, Humphrey S, Ram G, Smyth D, Chen J, Novick RP, Penadés JR (2017) Phage-inducible islands in the Gram-positive cocci. ISME J 11:1029–1042. CrossRefPubMedGoogle Scholar
  55. Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219. CrossRefPubMedGoogle Scholar
  56. Meredith TC, Swoboda JG, Walker S (2008) Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus. J Bacteriol 190:3046–3056. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Middelboe M, Holmfeldt K, Riemann L, Nybroe O, Haaber J (2009) Bacteriophages drive strain diversification in a marine Flavobacterium: implications for phage resistance and physiological properties. Environ Microbiol 11:1971–1982. CrossRefPubMedGoogle Scholar
  58. Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, Unno H (2003) Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl Environ Microbiol 69:170–176. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Morita M, Fischer CR, Mizoguchi K, Yoichi M, Oda M, Tanji Y, Unno H (2002) Amino acid alterations in Gp38 of host range mutants of PP01 and evidence for their infection of an OmpC null mutant of Escherichia coli O157:H7. FEMS Microbiol Lett 216:243–248. CrossRefPubMedGoogle Scholar
  60. Naser IB, Hoque MM, Nahid MA, Tareq TM, Rocky MK, Faruque SM (2017) Analysis of the CRISPR-Cas system in bacteriophages active on epidemic strains of Vibrio cholerae in Bangladesh. Sci Rep 7(1):14880. CrossRefPubMedPubMedCentralGoogle Scholar
  61. O’Hara BJ, Barth ZK, McKitterick AC, Seed KD (2017) A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome. PLoS Genet 13(6):e1006838. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Oechslin F (2018) Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10:351CrossRefPubMedCentralGoogle Scholar
  63. Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S, Yaakov G, Doron S, Sorek R (2018) DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol 3:90–98. CrossRefPubMedGoogle Scholar
  64. Oliveira PH, Touchon M, Rocha EPC (2014) The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 42:10618–10631. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ormala A-M, Jalasvuori M (2013) Phage therapy: should bacterial resistance to phage be a concern, even in the long run? Bacteriophage 3:1. CrossRefGoogle Scholar
  66. Osada K, Takeuchi I, Miyanaga K, Tanji Y (2017) Coevolution between Staphylococcus aureus isolated from mastitic milk and its lytic bacteriophage φSA012 in batch co-culture with serial transfer. Biochem Eng J 126:16–23. CrossRefGoogle Scholar
  67. Otsuka Y, Yonesaki T (2012) Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol Microbiol 83:669–681. CrossRefPubMedGoogle Scholar
  68. Pawluk A, Davidson AR, Maxwell KL (2018) Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol 16:12–17. CrossRefPubMedGoogle Scholar
  69. Raetz CRH, Whitfields C (2008) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700. CrossRefGoogle Scholar
  70. Reyes-Robles T, Dillard RS, Cairns LS, Silva-Valenzuela CA, Housman M, Ali A, Wright ER, Camilli A (2018) Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J Bacteriol 200(15).
  71. Sashital DG (2017) Prokaryotic Argonaute uses an all-in-one mechanism to provide host defense. Mol Cell 65:957–958CrossRefPubMedGoogle Scholar
  72. Seed KD (2015) Battling phages: how bacteria defend against viral attack. PLoS Pathog 11(6):e1004847CrossRefPubMedPubMedCentralGoogle Scholar
  73. Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A (2012) Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 8(9):e1002917. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Shabbir MZ, Hao H, Wu Q, Sattar A, Yuan Z (2016) Bacteria vs. bacteriophages: parallel evolution of immune arsenals. Front Microbiol 7:1292CrossRefPubMedPubMedCentralGoogle Scholar
  75. Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128:307–318PubMedGoogle Scholar
  76. Smith HW, Huggins MB, Shaw KM (1987) The control of experimental Escherichia coli diarrhea in calves by means of bacteriophages. Microbiology 133:1111–1126CrossRefGoogle Scholar
  77. Smith SGJ, Mahon V, Lambert MA, Fagan RP (2007) A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 273:1–11CrossRefPubMedGoogle Scholar
  78. Snyder L (1995) Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents? Mol Microbiol 15:415–420CrossRefPubMedGoogle Scholar
  79. Stern A, Sorek R (2011) The phage-host arms race: shaping the evolution of microbes. BioEssays 33:43–51CrossRefPubMedPubMedCentralGoogle Scholar
  80. Stewart FJ, Panne D, Bickle TA, Raleigh EA (2000) Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. J Mol Biol 298:611–622. CrossRefPubMedGoogle Scholar
  81. Stockdale SR, Mahony J, Courtin P, Chapot-Chartier MP, Van Pijkeren JP, Britton RA, Neve H, Heller KJ, Aideh B, Vogensen FK, Van Sinderen D (2013) The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization. J Biol Chem 288:5581–5590. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJJ, Van Der Oost J (2014a) DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507:258–261. CrossRefPubMedPubMedCentralGoogle Scholar
  83. Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, Van Der Oost J (2014b) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21:743–753CrossRefPubMedPubMedCentralGoogle Scholar
  84. Takeuchi I, Osada K, Azam AH, Asakawa H, Miyanaga K, Tanji Y (2016) The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal twort-like phages. Appl Environ Microbiol 82:5763–5774. CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tanji Y, Shimada T, Fukudomi H, Miyanaga K, Nakai Y, Unno H (2005) Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. J Biosci Bioeng 100:280–287. CrossRefPubMedGoogle Scholar
  86. Tétart F, Repoila F, Monod C, Krisch HM (1996) Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. J Mol Biol 258:726–731. CrossRefPubMedGoogle Scholar
  87. van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30Google Scholar
  88. Ventola CL (2015) The antibiotic resistance crisis. Part 1: causes and threats. PT 40:277–283Google Scholar
  89. Weidenmaier C, Peschel A, Xiong Y, Kristian SA, Dietz K, Yeaman MR, Bayer AS (2005) Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191:1771–1777. CrossRefPubMedGoogle Scholar
  90. Willkomm S, Makarova KS, Grohmann D (2018) DNA silencing by prokaryotic Argonaute proteins adds a new layer of defense against invading nucleic acids. FEMS Microbiol Rev 42:376–387CrossRefPubMedPubMedCentralGoogle Scholar
  91. Xia G, Corrigan RM, Winstel V, Goerke C, Gründling A, Peschel A (2011) Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. J Bacteriol 193:4006–4009. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yamaoka Y, Kita M, Kodama T, Imamura S, Ohno T, Sawai N, Ishimaru A, Imanishi J, Graham DY (2002) Helicobacter pylori infection in mice: role of outer membrane proteins in colonization and inflammation. Gastroenterology 123:1992–2004. CrossRefPubMedGoogle Scholar
  93. Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai K, Hanawa T, Kamiya S (2009) Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 9:197. CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zhvania P, Hoyle NS, Nadareishvili L, Nizharadze D, Kutateladze M (2017) Phage therapy in a 16-year-old boy with netherton syndrome. Front Med 4:94CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations