Advertisement

Evaluating the utility of human glucagon-like peptide 1 receptor gene as a novel radionuclide reporter gene: a promising molecular imaging tool

  • Yu Pan
  • Jing Lv
  • Donghui Pan
  • Yuping Xu
  • Min Yang
  • Huijun Ju
  • Jinxin Zhou
  • Liying Zhu
  • Qingqing Zhao
  • Yifan ZhangEmail author
Applied genetics and molecular biotechnology
  • 102 Downloads

Abstract

Radiolabelled ligands of glucagon-like peptide 1 receptor (GLP-1R) have been used to image the GLP-1R-expressing tissues (e.g., islets and insulinoma). Here, we introduced human glucagon-like peptide 1 receptor (hglp-1r) gene as a novel radionuclide reporter gene to broaden its applications in molecular imaging in vivo. Transient and stable baculoviral vectors (BV) were re-constructed and used to transfer the hglp-1r gene or enhanced green fluorescent protein (egfp) reporter gene into the stem cells or tumor cells. Cell proliferation assay and flow cytometry analysis demonstrated that BV-mediated reporter gene transferring and expression was biosafe and highly efficient. The BV-mediated exogenous hGLP-1R in target cells showed same ligand-receptor binding characteristics compared with its counterpart in insulinoma cells. Furthermore, the ligand-receptor binding assay showed a high affinity (IC50 = 0.3708 nM) and robust correlation (R2 = 0.9264) between the fluorescein-tagged or radiolabeled ligand probes and exogenous hGLP-1R in target cells. The target cells transferred with BV-mediated hGLP-1R could be clearly visualized in nude mice by micro-PET, which was capable of the purposes of short-term tracking transplanted stem cells or long-term monitoring tumor formation. Then, the image-based analysis and bio-distribution analysis quantitatively confirmed high target-to-background ratio of hGLP-1R-expressing cells. This study also investigated the endogenous GLP-1R-expressing organs/tissues in nude mice in the hGLP-1R radionuclide reporter gene imaging. Summarily, we evaluated the utility of hglp-1r gene as a novel radionuclide reporter gene, and demonstrated that it was a favorable and promising candidate of molecular imaging tool, which would expand the spectrum of radionuclide reporter gene imaging systems.

Keywords

Human glucagon-like peptide 1 receptor Exendin-4 Molecular imaging Reporter gene imaging Baculovirus Stem cells 

Notes

Acknowledgements

We would like to thank Prof. Dehua Yang for providing the hglp-1r-containing plasmid and the research group led by Prof. Ningli Li for the help in the flow cytometry analysis.

Authors’ contributions

YP, MY, and YZ designed and coordinated the study; YP, JL, YX, and LZ performed the in vitro experiments; YP, JL, DP, and QZ performed the in vivo experiments; DP radiolabeled the probes; YP and JL wrote the initial manuscript; YP, HJ, and JZ did the data statistics and made the graphs and charts; YP and YZ contributed to the final manuscript. All authors read and approved the final manuscript.

Funding

This study was sponsored by the National Natural Science Foundation of China (81471688, 81671720, and 81801726), the Shanghai Sailing Program (18YF1414300), and the Jiangsu Province Science and Technology Foundation (BE2014609 and BE2016632).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

This study was approved by the ethic board of Ruijin Hospital. All animal experiments were approved by the Institutional Animal Care and Use Committee of Ruijin Hospital, and were performed according to the Animal Care and Use Guideline. The isolation procedure of hUC-MSCs was approved by the Tongji University Institutional Review Board, and performed with informed consent.

Supplementary material

253_2018_9562_MOESM1_ESM.pdf (512 kb)
ESM 1 (PDF 511 kb)

References

  1. Ahn B (2014) Requisites for successful theranostics with radionuclide-based reporter gene imaging. J Drug Target 22(4):295–303PubMedCrossRefGoogle Scholar
  2. Airenne KJ, Hu YC, Kost TA, Smith RH, Kotin RM, Ono C, Matsuura Y, Wang S, Yla-Herttuala S (2013) Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 21(4):739–749PubMedPubMedCentralCrossRefGoogle Scholar
  3. Brader P, Serganova I, Blasberg RG (2013) Noninvasive molecular imaging using reporter genes. J Nucl Med 54(2):167–172PubMedCrossRefGoogle Scholar
  4. Christ E, Wild D, Ederer S, Béhé M, Nicolas G, Caplin M, Brändle M, Clerici T, Fischli S, Stettler C, Ell P, Seufert J, Gloor B, Perren A, Reubi J, Forrer F (2013) Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. Lancet Diabetes Endocrinol 1(2):115–122PubMedCrossRefGoogle Scholar
  5. Cotugno G, Aurilio M, Annunziata P, Capalbo A, Faella A, Rinaldi V, Strisciuglio C, Di Tommaso M, Aloj L, Auricchio A (2011) Noninvasive repetitive imaging of somatostatin receptor 2 gene transfer with positron emission tomography. Hum Gene Ther 22(2):189–196PubMedCrossRefGoogle Scholar
  6. Eng C, Kramer CK, Zinman B, Retnakaran R (2014) Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and meta-analysis. Lancet 384(9961):2228–2234PubMedCrossRefGoogle Scholar
  7. Ge Y, Yang D, Dai A, Zhou C, Zhu Y, Wang MW (2014) The putative signal peptide of glucagon-like peptide-1 receptor is not required for receptor synthesis but promotes receptor expression. Biosci Rep 34(6):e00152PubMedPubMedCentralCrossRefGoogle Scholar
  8. Hitchman RB, Siaterli EA, Nixon CP, King LA (2007) Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles. Biotechnol Bioeng 96(4):810–814PubMedCrossRefGoogle Scholar
  9. Hua J, He ZG, Qian DH, Lin SP, Gong J, Meng HB, Yang TS, Sun W, Xu B, Zhou B, Song ZS (2014) Angiopoietin-1 gene-modified human mesenchymal stem cells promote angiogenesis and reduce acute pancreatitis in rats. Int J Clin Exp Pathol 7(7):3580–3595PubMedPubMedCentralGoogle Scholar
  10. Huang G, Li J, Fu H, Yan Z, Bu G, He X, Wang Y (2012) Characterization of glucagon-like peptide 1 receptor (GLP1R) gene in chickens: functional analysis, tissue distribution, and identification of its transcript variants. Domest Anim Endocrinol 43(1):1–15PubMedCrossRefGoogle Scholar
  11. Hubalewska-Dydejczyk A, Sowa-Staszczak A, Tomaszuk M, Stefanska A (2015) GLP-1 and exendin-4 for imaging endocrine pancreas. A review. Labelled glucagon-like peptide-1 analogues: past, present and future. Q J Nucl Med Mol Imaging 59(2):152–160PubMedGoogle Scholar
  12. Jodal A, Schibli R, Béhé M (2017) Targets and probes for non-invasive imaging of β-cells. Eur J Nucl Med Mol Imaging 44(4):712–727PubMedCrossRefGoogle Scholar
  13. Korner M, Stockli M, Waser B, Reubi JC (2007) GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med 48(5):736–743PubMedCrossRefGoogle Scholar
  14. Liu S, Pan Y, Lv J, Wu HF, Tian JY, Zhang YF (2014) Feasibility of baculovirus-mediated reporter gene delivery for efficient monitoring of islet transplantation in vivo. Nucl Med Biol 41(2):171–178PubMedCrossRefGoogle Scholar
  15. Lv J, Pan Y, Li X, Cheng DF, Liu S, Shi HC, Zhang YF (2014) The imaging of insulinomas using a radionuclide-labelled molecule of the glp-1 analogue liraglutide: a new application of liraglutide. PLoS One 9(5):e96833PubMedPubMedCentralCrossRefGoogle Scholar
  16. Mi B, Xu Y, Pan D, Wang L, Yang R, Yu C, Wan W, Wu Y, Yang M (2016) Non-invasive glucagon-like peptide-1 receptor imaging in pancreas with 18F-Al labeled Cys39-exendin-4. Biochem Biophys Res Commun 471(1):47–51PubMedCrossRefGoogle Scholar
  17. Mikkola K, Yim C-B, Fagerholm V, Ishizu T, Elomaa V-V, Rajander J, Jurttila J, Saanijoki T, Tolvanen T, Tirri M, Gourni E, Behe M, Gotthardt M, Reubi JC, Macke H, Roivainen A, Solin O, Nuutila P (2014) 64Cu- and 68Ga-labelled [Nle14,Lys40(Ahx-NODAGA)NH2] -exendin-4 for pancreatic beta cell imaging in rats. Mol Imaging Biol 16(2):255–263PubMedCrossRefGoogle Scholar
  18. Pan Y, Liu S, Wu HF, Lv J, Xu XQ, Zhang YF (2013) Baculovirus as an ideal radionuclide reporter gene vector: a new strategy for monitoring the fate of human stem cells in vivo. PLoS One 8(4):e61305PubMedPubMedCentralCrossRefGoogle Scholar
  19. Pan Y, Yin HY, Lv J, Ju HJ, Zhou X, Zhang YF (2015) A novel hybrid baculovirus-adeno-associated viral vector-mediated radionuclide reporter gene imaging system for stem cells transplantation monitoring. Appl Microbiol Biotechnol 99(3):1415–1426PubMedCrossRefGoogle Scholar
  20. Pan Y, Lv J, Pan DH, Yang M, Ju HJ, Zhou JX, Zhu LY, Zhang YF (2018) Retrofitting baculoviral vector with Sleeping Beauty transposon system: competent for long-term reporter gene imaging in vivo. Appl Microbiol Biotechnol 102(4):1933–1943PubMedCrossRefGoogle Scholar
  21. Pyke C, Heller RS, Kirk RK, Orskov C, Reedtz-Runge S, Kaastrup P, Hvelplund A, Bardram L, Calatayud D, Knudsen LB (2014) GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155(4):1280–1290PubMedCrossRefGoogle Scholar
  22. Ray P, De A (2012) Reporter gene imaging in therapy and diagnosis. Theranostics 2(4):333–334PubMedPubMedCentralCrossRefGoogle Scholar
  23. Serganova I, Ponomarev V, Blasberg R (2007) Human reporter genes: potential use in clinical studies. Nucl Med Biol 34(7):791–807PubMedCrossRefGoogle Scholar
  24. Shiba K, Torashima T, Hirai H, Ogawa K, Akhter N, Nakajima K, Kinuya S, Mori H (2009) Potential usefulness of D2R reporter gene imaging by IBF as gene therapy monitoring for cerebellar neurodegenerative diseases. J Cereb Blood Flow Metab 29(2):434–440PubMedCrossRefGoogle Scholar
  25. Waser B, Reubi JC (2014) Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues. Eur J Nucl Med Mol Imag 41(6):1166–1171CrossRefGoogle Scholar
  26. Wu Z, Todorov I, Li L, Bading JR, Li Z, Nair I, Ishiyama K, Colcher D, Conti PE, Fraser SE, Shively JE, Kandeel F (2011) In vivo imaging of transplanted islets with 64Cu-DO3A-VS-Cys40-Exendin-4 by targeting GLP-1 receptor. Bioconjug Chem 22(8):1587–1594PubMedCrossRefGoogle Scholar
  27. Wu HF, Liang S, Liu S, Pan Y, Cheng DF, Zhang YF (2013a) 18Fradiolabeled GLP-1 analog exendin-4 for PET/CT imaging of insulinoma in small animals. Nucl Med Commun 34(7):701–708PubMedCrossRefGoogle Scholar
  28. Wu Z, Liu S, Hassink M, Nair I, Park R, Li L, Todorov I, Fox JM, Li Z, Shively JE (2013b) Development and evaluation of 18F-TTCO-Cys40-Exendin-4: a PET probe for imaging transplanted islets. J Nucl Med 54(2):244–251PubMedCrossRefGoogle Scholar
  29. Xu Q, Zhu C, Xu Y, Pan D, Liu P, Yang R, Wang L, Chen F, Sun X, Luo S, Yang M (2015) Preliminary evaluation of [18F]AlF-NOTA-MAL-Cys39-exendin-4 in insulinoma with PET. J Drug Target 23(9):813–820PubMedCrossRefGoogle Scholar
  30. Zhang YF, Chen WG (2012) Radiolabeled glucagon-like peptide-1 analogues: a new pancreatic beta-cell imaging agent. Nucl Med Commun 33(3):223–227PubMedCrossRefGoogle Scholar
  31. Zhang H, Moroz M, Serganova I, Ku T, Huang R, Vider J, Maecke H, Larson S, Blasberg R, Smith-Jones P (2011) Imaging expression of the human somatostatin receptor subtype-2 reporter gene with 68Ga-DOTATOC. J Nucl Med 52(1):123–131PubMedCrossRefGoogle Scholar
  32. Zhou X, Li B, Wang J, Wang J, Yin HY, Zhang YF (2010) The feasibility of using a baculovirus vector to deliver the sodium-iodide symporter gene as a reporter. Nucl Med Biol 37(3):299–308PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
  2. 2.Department of Nuclear Medicine, Zhongshan HospitalFudan UniversityShanghaiPeople’s Republic of China
  3. 3.Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiPeople’s Republic of China

Personalised recommendations