Advertisement

Induction of apoptosis-like death by periplanetasin-2 in Escherichia coli and contribution of SOS genes

  • Bin Lee
  • Jae Sam Hwang
  • Dong Gun LeeEmail author
Applied microbial and cell physiology
  • 89 Downloads

Abstract

Periplanetasin-2 is a 15-mer antimicrobial peptide (AMP), derived from the American cockroach Periplaneta americana. This novel AMP exhibits potent antibacterial effect against several pathogenic bacteria including Escherichia coli. Distinct from the targeting cell membrane, which is the general antibacterial mechanism of AMP, periplanetasin-2 exerts its antibacterial activity via apoptosis-like death, which is physiologically and mechanistically similar to eukaryotic apoptosis. E. coli cells treated with periplanetasin-2 showed features of apoptosis in a concentration-dependent manner, such as membrane depolarization, DNA fragmentation, caspase-like protein activation, and phosphatidylserine externalization. These physiological changes were attenuated by pretreatment with the reactive oxygen species (ROS) scavenger, which demonstrates that periplanetasin-2 induced apoptosis-like death in E. coli by generating ROS. In addition, periplantasin-2-induced apoptotic death was affected by SOS response components. In the absence of RecA, an essential protein for SOS response, apoptosis did not occur and the antibacterial activity of periplanetasin-2 was decreased. In contrast, deletion of the SOS gene dinF caused higher ROS accumulation and apoptotic features were detected. Collectively, these results indicate that the antibacterial mechanism of periplanetasin-2 is ROS-induced apoptosis-like death, which requires RecA for proceeding it, and the role of DinF is assumed to contribute to the ROS defense SOS response.

Keywords

Antimicrobial peptide Bacterial apoptosis-like death DinF Periplanetasin-2 Reactive oxygen species RecA 

Notes

Funding information

This work was supported by a grant from the Next-Generation BioGreen 21 Program (Project No. PJ01325603), Rural Development Administration, Republic of Korea.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9561_MOESM1_ESM.pdf (567 kb)
ESM 1 (PDF 567 kb)

References

  1. Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36(6):697–705.  https://doi.org/10.1016/j.arcmed.2005.06.009 CrossRefPubMedGoogle Scholar
  2. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008.  https://doi.org/10.1038/msb4100050 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals (Basel) 6(12):1543–1575.  https://doi.org/10.3390/ph6121543 CrossRefGoogle Scholar
  4. Baharoglu Z, Mazel D (2014) SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38(6):1126–1145.  https://doi.org/10.1111/1574-6976.12077 CrossRefPubMedGoogle Scholar
  5. Basu S, De D, Khanna HD, Kumar A (2014) Lipid peroxidation, DNA damage and total antioxidant status in neonatal hyperbilirubinemia. J Perinatol 34(7):519–523.  https://doi.org/10.1038/jp.2014.45 CrossRefPubMedGoogle Scholar
  6. Bell JC, Kowalczykowski SC (2016) RecA: regulation and mechanism of a molecular search engine. Trends Biochem Sci 41(6):491–507.  https://doi.org/10.1016/j.tibs.2016.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bellio P, Di Pietro L, Mancini A, Piovano M, Nicoletti M, Brisdelli F, Tondi D, Cendron L, Franceschini N, Amicosante G (2017) SOS response in bacteria: inhibitory activity of lichen secondary metabolites against Escherichia coli RecA protein. Phytomedicine 29:11–18.  https://doi.org/10.1016/j.phymed.2017.04.001 CrossRefPubMedGoogle Scholar
  8. Ben-Haim MS, Kanfi Y, Mitchel SJ, Maoz N, Vaughan K, Amariglio N, Lerrer B, de Cabo R, Rechavi G, Cohen HY (2017) Breaking the ceiling of human maximal lifespan. J Gerontol A Biol Sci Med Sci 73:1465–1471.  https://doi.org/10.1093/gerona/glx219 CrossRefGoogle Scholar
  9. Brown MH, Paulsen IT, Skurray RA (1999) The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31(1):394–395.  https://doi.org/10.1046/j.1365-2958.1999.01162.x CrossRefPubMedGoogle Scholar
  10. Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184.  https://doi.org/10.1111/j.0105-2896.2004.0124.x CrossRefPubMedGoogle Scholar
  11. Choo H-J, Saafir TB, Mkumba L, Wagner MB, Jobe SM (2012) Mitochondrial calcium and reactive oxygen species regulate agonist-initiated platelet phosphatidylserine exposure. Arterioscler Thromb Vasc Biol 32(12):2946–2955.  https://doi.org/10.1161/ATVBAHA.112.300433 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dwyer DJ, Winkler JA (2013) Identification and characterization of programmed cell death markers in bacterial models. In: McCall K, Klein C (eds) Necrosis. Methods in molecular biology, vol 1004. Humana Press, Totowa, pp 145–159.  https://doi.org/10.1007/978-1-62703-383-1_11 CrossRefGoogle Scholar
  13. Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ (2012) Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46(5):561–572.  https://doi.org/10.1016/j.molcel.2012.04.027 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N, Chan CT, Lobritz MA, Braff D, Schwarz EG, Ye JD, Pati M, Vercruysse M, Ralifo PS, Allison KR, Khalil AS, Ting AY, Walker GC, Collins JJ (2014) Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A 111(20):E2100–E2109.  https://doi.org/10.1073/pnas.1401876111 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Edition ASN (2012) CLSI document M07-A9. Suite 2500, Wayne, PAGoogle Scholar
  16. Erental A, Sharon I, Engelberg-Kulka H (2012) Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 10(3):e1001281.  https://doi.org/10.1371/journal.pbio.1001281 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H (2014) Apoptosis-like death, an extreme SOS response in Escherichia coli. MBio 5(4):e01426–e01414.  https://doi.org/10.1128/mBio.01426-14 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Friedberg EC, Walker GC, Siede W, Wood RD (2005) DNA repair and mutagenesis. Washington, DCGoogle Scholar
  19. Guidotti G, Brambilla L, Rossi D (2017) Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci 38(4):406–424.  https://doi.org/10.1016/j.tips.2017.01.003 CrossRefPubMedGoogle Scholar
  20. Guo J, Lao Y, Chang D (2009) Calcium and apoptosis. In: Lajtha A, Mikoshiba K (eds) Handbook of neurochemistry and molecular neurobiology. Springer, Boston, pp 597–622.  https://doi.org/10.1007/978-0-387-30370-3_33 CrossRefGoogle Scholar
  21. Imlay J, Fridovich I (1991) Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 266(11):6957–6965PubMedGoogle Scholar
  22. Jena N (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37(3):503–517.  https://doi.org/10.1007/s12038-012-9218-2 CrossRefPubMedGoogle Scholar
  23. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810.  https://doi.org/10.1016/j.cell.2007.06.049 CrossRefPubMedGoogle Scholar
  24. Kuroda T, Tsuchiya T (2009) Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 1794(5):763–768.  https://doi.org/10.1016/j.bbapap.2008.11.012 CrossRefPubMedGoogle Scholar
  25. Lee B, Lee DG (2017) Reactive oxygen species depletion by silibinin stimulates apoptosis-like death in Escherichia coli. J Microbiol Biotechnol 27(12):2129–2140.  https://doi.org/10.4014/jmb.1710.10029 CrossRefPubMedGoogle Scholar
  26. Lee H, Lee DG (2018) Arenicin-1-induced apoptosis-like response requires RecA activation and hydrogen peroxide against Escherichia coli. Curr Genet.  https://doi.org/10.1007/s00294-018-0855-3
  27. Lee W, Woo E-R, Lee DG (2016) Phytol has antibacterial property by inducing oxidative stress response in Pseudomonas aeruginosa. Free Radic Res 50(12):1309–1318.  https://doi.org/10.1080/10715762.2016.1241395 CrossRefPubMedGoogle Scholar
  28. Marcos JF, Gandía M (2009) Antimicrobial peptides: to membranes and beyond. Expert Opin Drug Discovery 4(6):659–671.  https://doi.org/10.1517/17460440902992888 CrossRefGoogle Scholar
  29. Mariño G, Kroemer G (2013) Mechanisms of apoptotic phosphatidylserine exposure. Cell Res 23(11):1247–1248.  https://doi.org/10.1038/cr.2013.115 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Marnett LJ (1999) Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res 424(1):83–95.  https://doi.org/10.1016/S0027-5107(99)00010-X CrossRefPubMedGoogle Scholar
  31. Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6(5):468–472.  https://doi.org/10.1016/j.coph.2006.04.006 CrossRefPubMedGoogle Scholar
  32. McKenzie GJ, Lee PL, Lombardo M-J, Hastings P, Rosenberg SM (2001) SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol Cell 7(3):571–579.  https://doi.org/10.1016/S1097-2765(01)00204-0 CrossRefPubMedGoogle Scholar
  33. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309.  https://doi.org/10.1016/j.tplants.2011.03.007 CrossRefPubMedGoogle Scholar
  34. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42(7):1778–1782CrossRefGoogle Scholar
  35. Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27(11):587–593.  https://doi.org/10.1016/j.tips.2006.09.001 CrossRefPubMedGoogle Scholar
  36. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565.  https://doi.org/10.1038/nrm1150 CrossRefPubMedGoogle Scholar
  37. Powers S, DeJongh M, Best AA, Tintle N (2015) Cautions about the reliability of pairwise gene correlations based on expression data. Front Microbiol 6:650.  https://doi.org/10.3389/fmicb.2015.00650 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rodríguez-Beltrán J, Rodríguez-Rojas A, Guelfo JR, Couce A, Blázquez J (2012) The Escherichia coli SOS gene dinF protects against oxidative stress and bile salts. PLoS One 7(4):e34791.  https://doi.org/10.1371/journal.pone.0034791 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sallmyr A, Fan J, Rassool FV (2008) Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 270(1):1–9.  https://doi.org/10.1016/j.canlet.2008.03.036 CrossRefPubMedGoogle Scholar
  40. Simmons LA, Foti JJ, Cohen SE, Walker GC (2008) The SOS regulatory network. EcoSal Plus.  https://doi.org/10.1128/ecosalplus.5.4.3
  41. Tudek B, Zdżalik-Bielecka D, Tudek A, Kosicki K, Fabisiewicz A, Speina E (2017) Lipid peroxidation in face of DNA damage, DNA repair and other cellular processes. Free Radic Biol Med 107:77–89.  https://doi.org/10.1016/j.freeradbiomed.2016.11.043 CrossRefPubMedGoogle Scholar
  42. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(2):120–139.  https://doi.org/10.1080/10590500902885684 CrossRefPubMedGoogle Scholar
  43. Wang Y, Wan J, Miron RJ, Zhao Y, Zhang Y (2016a) Antibacterial properties and mechanisms of gold-silver nanocages. Nanoscale 8(21):11143–11152.  https://doi.org/10.1039/c6nr01114d CrossRefPubMedGoogle Scholar
  44. Wang S, Zeng X, Yang Q, Qiao S (2016b) Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci 17(5):603.  https://doi.org/10.3390/ijms17050603 CrossRefPubMedCentralGoogle Scholar
  45. Wong-Ekkabut J, Xu Z, Triampo W, Tang I-M, Tieleman DP, Monticelli L (2007) Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J 93(12):4225–4236.  https://doi.org/10.1529/biophysj.107.112565 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Woodbine L, Brunton H, Goodarzi A, Shibata A, Jeggo P (2011) Endogenously induced DNA double strand breaks arise in heterochromatic DNA regions and require ataxia telangiectasia mutated and Artemis for their repair. Nucleic Acids Res 39(16):6986–6997.  https://doi.org/10.1093/nar/gkr331 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yang Z, Choi H, Weisshaar J (2018) Melittin-induced permeabilization, re-sealing, and re-permeabilization of E. coli membranes. Biophys J 114(3):376a–377a.  https://doi.org/10.1016/j.bpj.2017.10.046 CrossRefGoogle Scholar
  48. Yun DG, Lee DG (2016) Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl Microbiol Biotechnol 100(12):5505–5514.  https://doi.org/10.1007/s00253-016-7415-x CrossRefPubMedGoogle Scholar
  49. Yun J, Hwang JS, Lee DG (2017) The antifungal activity of the peptide, periplanetasin-2, derived from American cockroach Periplaneta americana. Biochem J 474(17):3027–3043.  https://doi.org/10.1042/BCJ20170461 CrossRefPubMedGoogle Scholar
  50. Zhang LJ, Gallo RL (2016) Antimicrobial peptides. Curr Biol 26(1):R14–R19.  https://doi.org/10.1016/j.cub.2015.11.017 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life Sciences, BK21 Plus KNU Creative BioResearch GroupKyungpook National UniversityDaeguKorea
  2. 2.Department of Agricultural BiologyNational Academy of Agricultural Science, RDAWanjuRepublic of Korea

Personalised recommendations