Advertisement

Production and extraction of carotenoids produced by microorganisms

  • Cassamo Ussemane Mussagy
  • James Winterburn
  • Valéria Carvalho Santos-Ebinuma
  • Jorge Fernando Brandão Pereira
Mini-Review
  • 218 Downloads

Abstract

Carotenoids are a group of isoprenoid pigments naturally synthesized by plants and microorganisms, which are applied industrially in food, cosmetic, and pharmaceutical product formulations. In addition to their use as coloring agents, carotenoids have been proposed as health additives, being able to prevent cancer, macular degradation, and cataracts. Moreover, carotenoids may also protect cells against oxidative damage, acting as an antioxidant agent. Considering the interest in greener and sustainable industrial processing, the search for natural carotenoids has increased over the last few decades. In particular, it has been suggested that the use of bioprocessing technologies can improve carotenoid production yields or, as a minimum, increase the efficiency of currently used production processes. Thus, this review provides a short but comprehensive overview of the recent biotechnological developments in carotenoid production using microorganisms. The hot topics in the field are properly addressed, from carotenoid biosynthesis to the current technologies involved in their extraction, and even highlighting the recent advances in the marketing and application of “microbial” carotenoids. It is expected that this review will improve the knowledge and understanding of the most appropriate and economic strategies for a biotechnological production of carotenoids.

Keywords

Carotenoids Microorganisms Production Extraction Biotechnology Market 

Notes

Acknowledgments

This research was supported by grants from the Ministry of Science and Technology, High Education and Technical Vocational Training of Mozambique (MCTESTP, Maputo, Mozambique) through the HEST Project—World Bank and the FAPESP (São Paulo Research Foundation Brazil) through the following projects: 2014/19793-3; 2014/16424-7; 2014/01580-3; and 2017/50303-0. The authors also acknowledge the support from the CNPq (National Council for Scientific and Technological Development, Brazil) and the CAPES (Coordination of Superior Level Staff Improvement, Brazil).

Authors’ contributions

Conceptualization: CUM, VCSE, JW, and JFBP. Literature review: CUM. Writing: CUM, JW, VCSE, and JFBP. Figures: CUM and JFBP. Funding: CUM, JW, VCSE, and JFBP. Validation: CUM, JW, VCSE, and JFBP. Review and editing: CUM, JW, VCSE, and JFBP. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Availability of data and materials

All data are fully available without restriction.

Consent for publication

This manuscript does not contain any individual person’s data.

Ethics approval and consent to participate

No animal or human subjects were used in this work.

References

  1. Abe K, Hattor H, Hiran M (2005) Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chem 100:656–661.  https://doi.org/10.1016/j.foodchem.2005.10.026 CrossRefGoogle Scholar
  2. Al-Yafeai A, Malarski A, Böhm V (2018) Characterization of carotenoids and vitamin E in R. rugosa and R. canina: comparative analysis. Food Chem 242:435–442.  https://doi.org/10.1016/j.foodchem.2017.09.070 CrossRefPubMedGoogle Scholar
  3. Amaya E, Becquet P, Carné S, Peris S, Miralles P (2014) Carotenoids in animal nutrition. Fefana Publication. http://fefana.org/publication/carotenoids-in-animal-nutrition/ Accessed 10 October 2018
  4. Ambrosio C, Campos F, Faro Z (2006) Carotenoids as an alternative against hypovitaminosis A. Rev Nutr 19:233–243.  https://doi.org/10.1590/S1415-52732006000200010 CrossRefGoogle Scholar
  5. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, p 30Google Scholar
  6. Araya-Garay JM, Feijoo-Siota L, Rosa-Dos-Santos F, Veiga-Crespo P, Villa TG (2012) Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene. Appl Microbiol Biotechnol 93:2483–2492.  https://doi.org/10.1007/s00253-011-3764-7 CrossRefPubMedGoogle Scholar
  7. Arvayo-Enríquez H, Mondaca-Fernández I, Gortárez-Moroyoqui P, López-Cervantes J, Rodríguez-Ramírez R (2013) Carotenoids extraction and quantification: a review. Anal Methods 5:2916.  https://doi.org/10.1039/c3ay26295b CrossRefGoogle Scholar
  8. Asta Real Company (2018). http://www.astareal.com/about-astaxanthin/source. Accessed 11 July 2018
  9. Avalos J, Carmen LM (2005) Biological roles of fungal carotenoids. Curr Genet 3:309–324.  https://doi.org/10.1007/s00294-014-0454-x CrossRefGoogle Scholar
  10. Baker RTM (2001) Canthaxanthin in aquafeed applications: is there any risk? Trends Food Sci Technol 12:240–243.  https://doi.org/10.1016/S0924-2244(01)00091-7 CrossRefGoogle Scholar
  11. Bhataya A, Schmidt-Dannert C, Lee PC (2009) Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochem 44:1095–1102.  https://doi.org/10.1016/j.procbio.2009.05.012 CrossRefGoogle Scholar
  12. Bhosale PB, Gadre RV (2001) Production of β-carotene by a mutant of Rhodotorula glutinis. Appl Mic Biotechl 55:423–427.  https://doi.org/10.1007/s002530000570 CrossRefGoogle Scholar
  13. Bianchi LP, Antunes GM (1999) Free radicals and the main dietary antioxidants. Nutrition 12:123–130.  https://doi.org/10.1590/S1415-52731999000200001 CrossRefGoogle Scholar
  14. Billakanti JM, Catchpole OJ, Fenton TA, Mitchell KA, MacKenzie AD (2013) Enzyme-assisted extraction of fucoxanthin and lipids containing polyunsaturated fatty acids from Undaria pinnatifida using dimethyl ether and ethanol. Process Biochem 48:1999–2008.  https://doi.org/10.1016/j.procbio.2013.09.015 CrossRefGoogle Scholar
  15. Bioextract (2018) http://www.bioextract.co.in/contact-us.php Accessed 11 October 2018
  16. BlueBioTech (2018). https://www.bluebiotech.de/com/uns.htm . Accessed 11 July 2018
  17. Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids. In: Spectroscopy, vol 1B. Birkhauser Verlag, Boston, p 360Google Scholar
  18. Buzzini P, Martini A (1999) Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour Technol 71:41–44.  https://doi.org/10.1016/S0960-8524(99)00056-5 CrossRefGoogle Scholar
  19. Cardoso LAC, Jäckel S, Karp SG, Framboisier X, Chevalot I, Marc I (2016) Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol. Bioresour Technol 200:374–379.  https://doi.org/10.1016/j.biortech.2015.09.108 CrossRefPubMedGoogle Scholar
  20. Cardoso LAC, Kanno KYF, Karp SG (2017a) Microbial production of carotenoids A review. Afr J Biotechnol 16(4):139–146.  https://doi.org/10.5897/ajb2016.15763 CrossRefGoogle Scholar
  21. Cardoso LAC, Karp SG, Vendruscolo F, Kanno KY, Zoz LI, Carvalho JC (2017b) Biotechnological production of carotenoids and their applications in food and pharmaceutical products. In: Carotenoids. InTech Open, London, UK.  https://doi.org/10.5772/67725 CrossRefGoogle Scholar
  22. Carocho M, Barreiro MF, Morales P, Ferreira I (2014) Adding molecules to food, pros and cons: a review on synthetic and natural food additives. Compr Rev Food Sci F 13:377–399.  https://doi.org/10.1111/1541-4337.12065 CrossRefGoogle Scholar
  23. Carocho M, Morales P, Ferreira ICFR (2015) Natural food additives: Quo vadis? Trends Food Sci Technol 45(2):284–295.  https://doi.org/10.1016/j.tifs.2015.06.007
  24. Cataldo V, Arenas N, López J, Camilo C, Agosin E (2018) Sustainable production of β-Xanthophylls in Saccharomyces cerevisiae. In Mic Eng. USA.Google Scholar
  25. Cerdá-Olmedo E (1987) Carotene. In: Cerdá-Olmedo E, Lipson ED (eds) Phycomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 199–222Google Scholar
  26. Chatel G, Pereira JFB, Debbeti V, Wang H, Rogers RD (2014) Mixing ionic liquids—“simple mixtures” or “double salts”? Green Chem 16(4):2051.  https://doi.org/10.1039/c3gc41389f CrossRefGoogle Scholar
  27. Cheng YT, Yang CF (2016) Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. J Taiwan Inst Chem E 61:270–275.  https://doi.org/10.1016/j.jtice.2015.12.027 CrossRefGoogle Scholar
  28. Cicci A, Sed G, Bravi M (2017) Potential of choline chloride-based natural deep eutectic solvents (NaDES) in the extraction of microalgal metabolites. Chem Eng Trans.  https://doi.org/10.3303/CET1757011
  29. Clotault J, Peltier D, Soufflet-Freslon V, Briard M, Geoffriau E (2012) Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots. PLoS One 7(6):38724.  https://doi.org/10.1371/journal.pone.0038724 CrossRefGoogle Scholar
  30. Colmán MM, Martínez-Huélamo M, Miralles E, Estruch R, Lamuela-Raventós R (2016) A new method to simultaneously quantify the antioxidants: carotenes, xanthophylls, and vitamin A in human plasma. Oxidative Med Cell Longev 2016:10.  https://doi.org/10.1155/2016/9268531 CrossRefGoogle Scholar
  31. Cyanotech Corporation (2018). https://www.cyanotech.com/astaxanthin/ . Accessed 11 July 2018
  32. Datta A, Philip L (2018) Biodegradation kinetics of toluene, ethylbenzene, and xylene as a mixture of VOCs. In: Sarma A., Singh V., Bhattacharjya R., Kartha S. (eds) Urban ecology, water quality and climate change. Water Science and Technology Library. 84. Springer.Google Scholar
  33. Daub ME, Payne GA (1989) The role of carotenoids in resistance of fungi to cercosporin. Phytopathology 79:180–185.  https://doi.org/10.1094/Phyto-79-180 CrossRefGoogle Scholar
  34. De Rosso VV, Mercadante AZ (2007) Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J Agric Food Chem 55:5062–5072.  https://doi.org/10.1021/jf0705421 CrossRefPubMedGoogle Scholar
  35. Delgado PR, Gallardo-Guerrero L, Hornero-Méndez D (2016) Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits. Food Chem 199:165–175.  https://doi.org/10.1016/j.foodchem.2015.11.135 CrossRefGoogle Scholar
  36. Demming-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Sci 298:149–2153.  https://doi.org/10.1126/science.1078002 CrossRefGoogle Scholar
  37. Dey S, Rathod VK (2013) Ultrasound assisted extraction of β-carotene from Spirulina platensis. Ultrason Sonochem 20:271–276.  https://doi.org/10.1016/j.ultsonch.2012.05.010 CrossRefPubMedGoogle Scholar
  38. El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott G, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48.  https://doi.org/10.1016/j.abb.2004.03.007 CrossRefPubMedGoogle Scholar
  39. El-Baky HHA, El-Baz FK, El-Baroty GS (2003) Spirulina species as a source of carotenoids and α-tocopherol and its anticarcinoma factors. Biotech 2:22–240.  https://doi.org/10.3923/biotech.2003.222.240 CrossRefGoogle Scholar
  40. El-Jack M, Mackenzie A, Bramley PM (1988) The photoregulation of carotenoid biosynthesis in Aspergillus giganteus mut. alba. Planta 174:59–66.  https://doi.org/10.1007/BF00394874 CrossRefPubMedGoogle Scholar
  41. Esteban R, Moran JF, Becerril JM, García-Plazaola JI (2015) Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions. Environ Exp Bot 119:63–75.  https://doi.org/10.1016/j.envexpbot.2015.04.009 CrossRefGoogle Scholar
  42. Estrada AF, Brefort T, Mengel C, Díaz-Sánchez V, Alder A, Al-Babili S, Avalos J (2010) Ustilago maydis accumulates β-carotene at levels determined by a retinal-forming carotenoid oxygenase. Fungal Genet Biol 46:803–813.  https://doi.org/10.1016/j.fgb.2009.06.011 CrossRefGoogle Scholar
  43. Fang TJ, Wang JM (2002) Extractability of astaxanthin in a mixed culture of a carotenoid over-producing mutant of Xanthophyllomyces dendrorhous and Bacillus circulans in two-stage batch fermentation. Process Biochem 37:1235–1245.  https://doi.org/10.1016/S0032-9592(02)00011-0 CrossRefGoogle Scholar
  44. Feldmann C, Ruck M (2017) Ionic liquids—designer solvents for the synthesis of new compounds and functional materials. Z Anorg Allg Chem 643:2.  https://doi.org/10.1002/zaac.201700001 CrossRefGoogle Scholar
  45. Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrition 6(2):466–488.  https://doi.org/10.3390/nu6020466 CrossRefGoogle Scholar
  46. Fraser PD, Ruiz-Hidalgo MJ, López-Matas MA, Álvarez MI, Eslava AP, Bramley PM (1996) Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. Biochim Biophys Acta 1289:203–208.  https://doi.org/10.1016/0304-4165(95)00169-7 CrossRefPubMedGoogle Scholar
  47. Galaup P, Suthiwong N, Leclercq-Perlat MN, Valla A, Caro Y, Fouillaud M, Guérard F, Dufossé L (2015) First isolation of Brevibacterium sp. pigments in the rind of an industrial red-smear-ripened soft cheese. Int J Dairy Technol 68:144–147.  https://doi.org/10.1111/1471-0307.12211 CrossRefGoogle Scholar
  48. Gammone MA, Riccioni G, D’Orazio N (2015) Marine carotenoids against oxidative stress: effects on human health. Marine Mar Drugs 13(10):6226–6246.  https://doi.org/10.3390/md13106226 CrossRefPubMedGoogle Scholar
  49. Geoffrey BA, Felix MB (1991) Canthaxanthin and the eye: a critical ocular toxicologic assessment. Cutan Ocul Toxicol 10:115–155.  https://doi.org/10.3109/15569529109057908 CrossRefGoogle Scholar
  50. Georgiou CD, Tairis N, Polycratis A (2001a) Production of β-carotene by Sclerotinia sclerotiorum and its role in sclerotium differentiation. Mycol Res 105:1110–1115.  https://doi.org/10.1016/S0953-7562(08)61974-7 CrossRefGoogle Scholar
  51. Georgiou CD, Zervoudakis G, Tairis N, Kornaros M (2001b) β-Carotene production and its role in sclerotial differentiation of Sclerotium rolfsii. Fungal Genet Biol 34:11–20.  https://doi.org/10.1006/fgbi.2001.1285 CrossRefPubMedGoogle Scholar
  52. Gharibzahedi SMT, Razavi SH, Mousavi SM (2013) Microbial canthaxanthin: perspectives on biochemistry and biotechnological production. Eng Life Sci 13:408–417.  https://doi.org/10.1002/elsc.201200153 CrossRefGoogle Scholar
  53. Giménez Giménez A, Ibáñez González MJ, Robles Medina A, Molina Grima E, García Salas S, Esteban Cerdán L (1997) Downstream processing and purification of eicosapentaenoic (20:5n-3) and arachidonic acids (20:4n-6) from the microalga Porphyridium cruentum. Bioseparation 7:89–99.  https://doi.org/10.1023/A:1008021330785 CrossRefGoogle Scholar
  54. Giuffrida D, Sutthiwong N, Dugo P, Donato P, Cacciola F, Girard-Valenciennes E, Mao YL, Monnet C, Fouillaud M, Caro Y, Dufossé L (2016) Characterisation of the C50 carotenoids produced by strains of the cheese-ripening bacterium Arthrobacter arilaitensis. Int Dairy J 55:10–16.  https://doi.org/10.1016/j.idairyj.2015.11.005 CrossRefGoogle Scholar
  55. Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34(8):1396–1412.  https://doi.org/10.1016/j.biotechadv.2016.10.005 CrossRefPubMedGoogle Scholar
  56. Goula AM, Ververi M, Adamopoulou A, Kaderides K (2017) Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason Sonochem 34:821–830.  https://doi.org/10.1016/j.ultsonch.2016.07.022 CrossRefPubMedGoogle Scholar
  57. Grewe C, Menge S, Griehl C (2007) Enantioselective separation of all-E-astaxanthin and its determination in microbial sources. J Chromatogr A 1166:97–100.  https://doi.org/10.1016/j.chroma.2007.08.002 CrossRefPubMedGoogle Scholar
  58. Gu Z, Deming C, Yongbin H, Zhigang C, Feirong G (2008) Optimization of carotenoids extraction from Rhodobacters phaeroides. LWT Food Sci Technol 41:1082–1088.  https://doi.org/10.1016/j.lwt.2007.07.005 CrossRefGoogle Scholar
  59. Han JR, Zhao WJ, Gao YY, Yuan JM (2005) Effect of oxidative stress and exogenous β-carotene on sclerotial differentiation and carotenoid yield of Penicillium sp. PT95. Lett Appl Microbiol 40:412–417.  https://doi.org/10.1111/j.1472-765X.2005.01697.x CrossRefPubMedGoogle Scholar
  60. Han M, He Q, Zhang WG (2012) Carotenoids production in different culture conditions by Sporidiobolus pararoseus. Prep Biochem Biotechnol 42:293–303.  https://doi.org/10.1080/10826068.2011.583974 CrossRefPubMedGoogle Scholar
  61. Heba M, Kanzy NF, Hoida AM (2015) Optimization of carotenoids production by yeast strains of Rhodotorula using salted cheese whey. Int J Curr Microbiol App Sc 4(1):456–469Google Scholar
  62. Henríquez V, Escobar C, Galarza J, Gimpel J (2016) Carotenoids in microalgae. In: Stange C. (eds) Carotenoids in nature. Subcell biochem.Google Scholar
  63. Heo SJ, Jeon YJ (2009) Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B 95:101–107.  https://doi.org/10.1016/j.jphotobiol.2008.11.011 CrossRefPubMedGoogle Scholar
  64. Humayoun Akhtar M, Bryan M (2008) Extraction and quantification of major carotenoids in processed foods and supplements by liquid chromatography. Food Chem 111:255–261.  https://doi.org/10.1016/j.foodchem.2008.03.071 CrossRefGoogle Scholar
  65. Jaswir I, Noviendri D, Hasrini RF, Octavianti F (2011) Carotenoids: sources, medicinal properties and their application in food and nutraceutical industry. J Med Plant Res 5:33.  https://doi.org/10.5897/jmprx11.011 CrossRefGoogle Scholar
  66. Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501.  https://doi.org/10.1007/s11248-007-9120-0 CrossRefPubMedGoogle Scholar
  67. Jin H, Lao YM, Zhou J, Zhang HJ, Cai ZH (2017) Simultaneous determination of 13 carotenoids by a simple C18 column-based ultra-high-pressure liquid chromatography method for carotenoid profiling in the astaxanthin-accumulating Haematococcus pluvialis. J Chromatogr A 1488:93–103.  https://doi.org/10.1016/j.chroma.2017.01.088 CrossRefPubMedGoogle Scholar
  68. Johner JCF, Meireles MAA (2016) Construction of a supercritical fluid extraction (SFE) equipment: validation using annatto and fennel and extract analysis by thin layer chromatography coupled to image. LWT Food Sci Technol 36(2):210–247.  https://doi.org/10.1590/1678-457X.0027 CrossRefGoogle Scholar
  69. Johnson E, Schroeder W (1996) Microbial carotenoids. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 119–178Google Scholar
  70. Johnson EA (2003) Phaffia rhodozyma: colorful odyssey. Int Microbiol 6:169–174.  https://doi.org/10.1007/s10123-003-0130-3 CrossRefPubMedGoogle Scholar
  71. Johnson EA, Schroeder WA (1995) Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem 270(31):18374–18379.  https://doi.org/10.1074/jbc.270.31.18374 CrossRefPubMedGoogle Scholar
  72. Johnson EA, Villa TG, Lewis MJ (1980) Phaffia rhodozyma as an astaxanthin source in salmonid diets. Aquaculture 20:123–134.  https://doi.org/10.1016/0044-8486(80)90041-1 CrossRefGoogle Scholar
  73. Kot AM, Błażejak S, Kurcz A (2016) Rhodotorula glutinis—potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biotechnol 100:6103–6117.  https://doi.org/10.1007/s00253-016-7611-8 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Krinsky NI (1989) Antioxidant functions of carotenoids. Free Radic Biol Med 7:617–635.  https://doi.org/10.1016/0891-5849(89)90143-3 CrossRefPubMedGoogle Scholar
  75. Kumar SPJ, Kumar GV, Dash A, Scholz P, Banerjee R (2017) Sustainable green solvents and techniques for lipid extraction from microalgae: a review. Algal Res 21:138–147.  https://doi.org/10.1016/j.algal.2016.11.014 CrossRefGoogle Scholar
  76. Langi P, Kiokias S, Varzakas T, Proestos C (2018) Carotenoids: from plants to food and feed industries. Methods Mol Biol 1852:57–71.  https://doi.org/10.1007/978-1-4939-8742-9_3 CrossRefPubMedGoogle Scholar
  77. Lavecchia R, Zuorro A (2008) Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur Food Res Technol 288:153–158.  https://doi.org/10.1007/s00217-008-0897-8 CrossRefGoogle Scholar
  78. Lee YR, Row KH (2016) Comparison of ionic liquids and deep eutectic solvents as additives for the ultrasonic extraction of astaxanthin from marine plants. J Ind Eng Chem 39:87–92.  https://doi.org/10.1016/j.jiec.2016.05.014 CrossRefGoogle Scholar
  79. Liang MH, Zhu J, Jiang JG (2017) Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Crit Rev Food Sci 13:1–20.  https://doi.org/10.1080/10408398.2017.1322552 CrossRefGoogle Scholar
  80. Lim GB, Lee SY, Lee EK, Haam SJ, Kim WS (2002) Separation of astaxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction. Biochem Eng J 11:181–187.  https://doi.org/10.1016/S1369-703X(02)00023-2 CrossRefGoogle Scholar
  81. Lin X, Gao N, Liu S, Zhang S, Song S, Ji C, Dong X, Su Y, Zhao ZK, Zhu B (2017) Characterization the carotenoid productions and profiles of three Rhodosporidium toruloides mutants from Agrobacterium tumefaciens-mediated transformation. Yeast 34:335–342.  https://doi.org/10.1002/yea.3236 CrossRefPubMedGoogle Scholar
  82. Lovisa S, Kalluri R (2018) Fatty acid oxidation regulates the activation of endothelial-to-mesenchymal transition. Trends Mol Med 24:432–434.  https://doi.org/10.1016/j.molmed.2018.03.003 CrossRefPubMedGoogle Scholar
  83. Macías-Sánchez MD, Fernandez-Sevill M, Acién-Fernández FG, Cerón-Garcia MC, Molina-Grima E (2010) Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem 123:928–935.  https://doi.org/10.1016/j.foodchem.2010.04.076 CrossRefGoogle Scholar
  84. Macı́as-Sánchez MD, Mantell C, Rodrı́guez M, Martı́nez de la Ossa E, Lubián LM, Montero O (2005) Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J Food Eng 66(2):245–251.  https://doi.org/10.1016/j.jfoodeng.2004.03.021 CrossRefGoogle Scholar
  85. Maldonade R, Adilma R, Scamparini P, Rodriguez Amaya B (2007) Selection and characterization of carotenoid producing yeasts from Campinas region, Brazil. Braz J Microbiol 38:65–70.  https://doi.org/10.1590/S1517-83822007000100014 CrossRefGoogle Scholar
  86. Malisorn C, Suntornsuk W (2009) Improved β-carotene production of Rhodotorula glutinis in fermented radish brine by continuous cultivation. Biochem Eng J 43:27–32.  https://doi.org/10.1016/j.bej.2008.08.005 CrossRefGoogle Scholar
  87. Manimala MRA, Murugesan R (2018) Characterization of carotenoid pigment production from yeast Sporobolomyces sp. and their application in food products. J Pharm Phytochem 7:2818–2821Google Scholar
  88. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotech Biotech 31:1532–1542.  https://doi.org/10.1016/j.biotechadv.2013.07.011 CrossRefGoogle Scholar
  89. Martins N, Roriz CL, Morales P, Barros L, Ferreira I (2016) Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci Technol 52:1–15.  https://doi.org/10.1016/j.tifs.2016.03.009 CrossRefGoogle Scholar
  90. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Factories 21:13–12.  https://doi.org/10.1186/1475-2859-13-12 CrossRefGoogle Scholar
  91. Matthäus F, Ketelhot M, Gatter M, Barth G (2014) Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl Environ Microbiol 80:1660–1669.  https://doi.org/10.1128/AEM.03167-13 CrossRefPubMedPubMedCentralGoogle Scholar
  92. McWilliams A (2018) The global market for carotenoids, report code: FOD025F. BCC Research LLCGoogle Scholar
  93. Medina AR, Giménez AG, Camacho FG, Pérez JAS, Grima EM, Gómez AC (1995) Concentration and purification of stearidonic, eicosapentaenoic, and docosahexaenoic acids from cod liver oil and the marine microalga Isochrysis galbana. J Am Oil Chem Soc 72:575–583.  https://doi.org/10.1007/BF02638859 CrossRefGoogle Scholar
  94. Mezzomo N, Ferreira SRS (2016) Carotenoids functionality, sources, and processing by supercritical technology: a review. J Chem-NY 2016:1–16.  https://doi.org/10.1155/2016/3164312 CrossRefGoogle Scholar
  95. Miguel T, Calo P, Díaz A, Villa TG (1997) The genus Rhodosporidium: a potential source of β-carotene. Microbiology 13:67–70Google Scholar
  96. Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:546.  https://doi.org/10.3389/fmicb.2016.00546 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Misawa N, Shimada H (1998) Metabolic engineering for the production of carotenoids in non- carotenogenic bacteria and yeasts. J Biotechnol 59:169–181.  https://doi.org/10.1016/s0168-1656(97)00154-5 CrossRefGoogle Scholar
  98. Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N (1998) Production of the carotenoids lycopene, β-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 129:178–195.  https://doi.org/10.1016/j.quascirev.2015.10.016 CrossRefGoogle Scholar
  99. Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  100. Monnet C, Loux V, Gilbrat J, Spinnler H, Barbe V, Vacherie B (2010) The Arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface cheese. PLoS One 5:11.  https://doi.org/10.1371/journal.pone.0015489 CrossRefGoogle Scholar
  101. Nabae K, Ichihara T, Hagiwara A, Hirota T, Toda Y, Tamano S, Shirai T (2005) A 90-day oral toxicity study of beta-carotene derived from Blakeslea trispora, a natural food colorant, in F344 rats. Food Chem Toxicol 43(7):1127–1133.  https://doi.org/10.1016/j.fct.2005.03.003 CrossRefPubMedGoogle Scholar
  102. Naguib YMA (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48(4):1150–1154.  https://doi.org/10.1021/jf991106k CrossRefPubMedGoogle Scholar
  103. Navarro E, Sandmann G, Torres-Martínez S (1995) Mutants of the carotenoid biosynthetic pathway of Mucor circinelloides. Exp Mycol 19:186–190.  https://doi.org/10.1006/emyc.1995.1023 CrossRefGoogle Scholar
  104. Nutralliance (2018) http://www.nutralliance.com/about_us.html Accessed 11 October 2018
  105. Oliveira MVS, Vidal BT, Melo CM, Miranda RCM, Soares CMF, Coutinho JAP, Ventura SPM, Mattedi S, Lima AS (2016) (Eco)toxicity and biodegradability of protic ionic liquids. Chembiochem 147:460–466.  https://doi.org/10.1016/j.chemosphere.2015.11.016 CrossRefGoogle Scholar
  106. Olson JA (1999) Carotenoids and human health. Arch Latinoam Nutr 49:7–11Google Scholar
  107. Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain Chem Eng 2:1063–1071.  https://doi.org/10.1021/sc.500096jl. CrossRefGoogle Scholar
  108. Park PK, Kim EY, Chu KH (2007) Chemical disruption of yeast cells for the isolation of carotenoid pigments. Sep Purif Technol 53:148–152.  https://doi.org/10.1016/j.seppur.2006.06.026 CrossRefGoogle Scholar
  109. Parniakov O, Apicella E, Koubaa M, Barba FJ, Grimi N, Lebovka N, Pataro G, Ferrari G, Vorobiev E (2015) Ultrasound-assisted green solvent extraction of high-added value compounds from microalgae Nannochloropsis spp. Bioresour Technol 198:262–267.  https://doi.org/10.1016/j.biortech.2015.09.020 CrossRefPubMedGoogle Scholar
  110. Parry Nutraceuticals (2018). http://www.parrynutraceuticals.com/products/natural-mixed-caretenoids/. Accessed 11 July 2018
  111. Powls R, Britton G (1977) A series of mutant strains of Scenedesmus obliquus with abnormal carotenoid compositions. Arch Microbiol 113:275–280.  https://doi.org/10.1007/BF00492035 CrossRefPubMedGoogle Scholar
  112. Pratheeba M, Umaa RK, Kotteeswaran R, Thamaraikannan H (2014) Extraction and analysis of beta carotenoid from red yeast Rhodotorula glutinis. Intern J Pharm Int Life Sci 2(3):9–29Google Scholar
  113. Praveenkumar R, Lee K, Lee J, Oh Y (2015) Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae. Green Chem 17:1226–1234.  https://doi.org/10.1039/C4GC01413H CrossRefGoogle Scholar
  114. Rabbani S, Beyer P, Von LJ, Hugueney P, Kleinig H (1998) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248.  https://doi.org/10.1104/pp.116.4.1239 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Ramel F, Birtic S, Cuiné S, Triantaphylidè C, Ravanat J, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158(3):1267–1278.  https://doi.org/10.1104/pp.111.182394 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Rivera SM, Christou P, Canela-Garayoa R (2014) Identification of carotenoids using mass spectrometry. Mass Spectrom Rev 33:353–372.  https://doi.org/10.1002/mas.21390 CrossRefPubMedGoogle Scholar
  117. Rodriguez-Amaya ADB (2016) Natural food pigments and colorants. Curr Opin Food Sci 7:20–26.  https://doi.org/10.1016/j.cofs.2015.08.004 CrossRefGoogle Scholar
  118. Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez A, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93.  https://doi.org/10.1016/j.plipres.2018.04.004 CrossRefPubMedGoogle Scholar
  119. Román RB, Alvárez-Pez JM, Fernández FGA, Grima EM (2002) Recovery of pure b-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73–85.  https://doi.org/10.1016/S0168-1656(01)00385-6 CrossRefGoogle Scholar
  120. Saini RK, Keum YS (2017) Progress in microbial carotenoids production. Indian J Microbiol 57:129–130.  https://doi.org/10.1007/s12088-016-0637-x CrossRefPubMedPubMedCentralGoogle Scholar
  121. Saini RK, Keum YS (2018) Carotenoid extraction methods: a review of recent developments. Food Chem 240:90–103.  https://doi.org/10.1016/j.foodchem.2017.07.099 CrossRefPubMedGoogle Scholar
  122. Sajilata MG, Bule MV, Chavan P, Singhal RS, Kamat MY (2010) Development of efficient supercritical carbon dioxide extraction methodology for zeaxanthin from dried biomass of Paracoccus zeaxanthinifaciens. Sep Purif Technol 71:173–177.  https://doi.org/10.1016/j.seppur.2009.11.017 CrossRefGoogle Scholar
  123. Salar-García MJ, Ortiz-Martínez VM, Hernández-Fernández FJ (2017) Ionic liquid technology to recover volatile organic compounds (VOCs). J Hazard Mater 321:484–499.  https://doi.org/10.1016/j.jhazmat.2016.09.040 CrossRefPubMedGoogle Scholar
  124. Schierle J, Bernd P, Ceresa A, Fizet C (2004) Journal of AOAC International. J AOAC Int 87:1070–1082PubMedPubMedCentralGoogle Scholar
  125. Schulz H, Baranska M, Baranski R (2005) Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77:212–221.  https://doi.org/10.1002/bip.20215 CrossRefPubMedGoogle Scholar
  126. Shahidi F, Ambigaipalan P (2015) Novel functional food ingredients from marine sources. Curr Opin Food Sci 2:123–129.  https://doi.org/10.1016/j.cofs.2014.12.009 CrossRefGoogle Scholar
  127. Shih CT, Hang YD (1996) Production of carotenoids by Rhodotorula rubra from sauerkraut brine. LWT Food Sci Technol 29(5–6):570–572.  https://doi.org/10.1006/fstl.1996.0087 CrossRefGoogle Scholar
  128. Silva TP, Paixão SM, Alves L (2016) Ability of Gordonia alkanivorans strain 1B for high added value carotenoids production. RSC Adv 6:58055–58063.  https://doi.org/10.1039/C6RA08126F CrossRefGoogle Scholar
  129. Singh D, Gupta A, Wilkens SL, Mathur AS, Tuli DK, Barrow CJ, Puri M (2015) Understanding response surface optimisationoptimization to the modeling of Astaxanthin extraction from a novel strain Thraustochytrium sp. Algal Res 11:113–120.  https://doi.org/10.1016/j.algal.2015.06.005 CrossRefGoogle Scholar
  130. Sy C, Dangles O, Borel P, Caris-Veyrat C (2015) Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment—comparison with dietary reference carotenoids. Arch Biochem Biophys 572:89–100.  https://doi.org/10.1016/j.abb.2014.12.030 CrossRefPubMedGoogle Scholar
  131. Takaichi S, Mimuro M, Tomita Y (2006) Carotenoids—biological functions and diversity. Shokabo, TokyoGoogle Scholar
  132. Taverne YJ, Merkus D, Bogers AJ, Halliwell B, Duncker DJ, Lyons TW (2018) Reactive oxygen species: radical factors in the evolution of animal life: a molecular timescale from Earth’s earliest history to the rise of complex life. BioEssays 40(3):1–9.  https://doi.org/10.1002/bies.201700158
  133. Tinoi J, Rakariyatham N, Deming RL (2005) Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochem 40(7):2551–2557.  https://doi.org/10.1016/j.procbio.2004.11.005 CrossRefGoogle Scholar
  134. Torres FAE, Zaccarim BR, Novaes LCL, Jozala AF, Santos CA, Teixeira MFS, Santos-Ebinuma VC (2016) Natural colorants from filamentous fungi. Appl Microbiol Biotechnol 100(6):2511–2521.  https://doi.org/10.1007/s00253-015-7274-x CrossRefPubMedGoogle Scholar
  135. Toti E, Chen CYO, Palmery M, Villaño VD, Peluso I (2018) Non-provitamin A and provitamin A carotenoids as immunomodulators: recommended dietary allowance, therapeutic index, or personalized nutrition? Oxidative Med Cell Longev 1:20.  https://doi.org/10.1155/2018/4637861 CrossRefGoogle Scholar
  136. Ungureanu C, Marchal L, Chirvase AA, Foucault A (2013) Centrifugal partition extraction, a new method for direct metabolites recovery from culture broth: case study of torularhodin recovery from Rhodotorula rubra. Bioresour Technol 132:406–409.  https://doi.org/10.1016/j.biortech.2012.11.105 CrossRefPubMedGoogle Scholar
  137. Vachali P, Bhosale P, Bernstein PS (2012) Microbial carotenoids. In: Barredo JL. (eds) Microbial carotenoids from fungi. Met in Mol Bio (Methods and Protocols), 898. Humana Press. Totowa, NJ.  https://doi.org/10.1007/978-1-61779-918-1_2
  138. Valduga E, Tatsch PO, Tiggemann LT (2009b) Carotenoids production: microorganisms as source of natural dyes. Quim Nova 32(9):2429–2436.  https://doi.org/10.1590/S0100-40422009000900036 CrossRefGoogle Scholar
  139. Valduga E, Valério A, Tatsch PO (2009a) Assessment of cell disruption and carotenoids extraction from Sporidiobolus salmonicolor (CBS 2636). Food Bioprocess Technol 2:234–238.  https://doi.org/10.1007/s11947-008-0133-3 CrossRefGoogle Scholar
  140. Van-Eijk GW, Mummery RS, Roeymans HJ, Valadon LR (1979) A comparative study of carotenoids of Aschersonia aleyroides and Aspergillus giganteus. Antonie Van Leeuwenhoek 45:417–422.  https://doi.org/10.1007/BF00443280 CrossRefPubMedGoogle Scholar
  141. Ventura SPM, Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP (2017) Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future. Trends Chem Rev 117(10):6984–7052.  https://doi.org/10.1021/acs.chemrev.6b00550 CrossRefPubMedGoogle Scholar
  142. Wackenroder H (1831) Geiger's pharmacy magazine 33:144–172Google Scholar
  143. Xavier AAO, Pérez-Gálvez A (2016) Carotenoids as a source of antioxidants in the diet. In: Stange C. (eds) Carotenoids in nature. Subcel Biochem. 79. doi:  https://doi.org/10.1007/978-3-319-39126-7_14
  144. Xiao X, Si X, Yuan Z, Xu X, Li G (2012) Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed countercurrent chromatography. J Sep Sci 35(17):2313–2317.  https://doi.org/10.1002/jssc.201200231 CrossRefPubMedGoogle Scholar
  145. Yabuzaki J (2017) Carotenoids database: structures, chemical fingerprints and distribution among organisms. doi:  https://doi.org/10.1093/database/bax004
  146. Yamagata K (2017) Carotenoids regulate endothelial functions and reduce the risk of cardiovascular disease. In: Cvetkovic DJ, Nikolic GS (eds) Carotenoids. InTech, Leskovac, pp 106–121.  https://doi.org/10.5772/67464 CrossRefGoogle Scholar
  147. Yan X, Chuda Y, Suzuki M, Nagata T (1999) Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem 63:605–607.  https://doi.org/10.1271/bbb.63.605 CrossRefPubMedGoogle Scholar
  148. Yara-Varón E, Fabiano-Tixier AS, Balcells M, Canela-Garayoa R, Bily A, Chemat F (2016) Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv 6:27750–27759.  https://doi.org/10.1039/C6RA03016E CrossRefGoogle Scholar
  149. Ye VM, Bhatia SK (2012) Pathway engineering strategies for production of beneficial carotenoids in microbial hosts. Biotechnol Lett 34:1405–1414.  https://doi.org/10.1007/s10529-012-0921-8 CrossRefPubMedGoogle Scholar
  150. Yoo AY, Alnaeeli M, Park JK (2016) Production control and characterization of antibacterial carotenoids from the yeast Rhodotorula mucilaginosa AY-01. Process Biochem 51:463–473.  https://doi.org/10.1016/j.procbio.2016.01.008 CrossRefGoogle Scholar
  151. Zaccarim BR, de Oliveira F, Passarini MRZ, Duarte AWF, Sette LD, Jozala AF, de Carvalho SEV (2018) Sequencing and phylogenetic analyses of Talaromyces amestolkiae from the Amazon, a producer of natural colorants. Biotechnol Prog 2:33.  https://doi.org/10.1002/btpr.2684 CrossRefGoogle Scholar
  152. Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS (2017) New horizons in the extraction of bioactive compounds using deep eutectic solvents: a review. Anal Chim Acta 979:1–23.  https://doi.org/10.1016/j.aca.2017.05.012 CrossRefPubMedGoogle Scholar
  153. Zaragozá MC, López D, Poquet M, Pérez J, Puig-Parellada P, Màrmol F (2008) Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. J Agric Food Chem 56:7773–7780.  https://doi.org/10.1021/jf8007053 CrossRefPubMedGoogle Scholar
  154. Zhang H, Tang B, Row KH (2014) A green deep eutectic solvent-based ultrasound-assisted method to extract astaxanthin from shrimp byproducts. Anal Lett 47:742–749.  https://doi.org/10.1080/00032719.2013.855783 CrossRefGoogle Scholar
  155. Ziouzenkova O, Orasanu G, Sukhova G, Lau E, Berger JP, Tang G, Plutzky J (2007) Asymmetric cleavage of β-carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses. Mol Endocrinol 21(1):77–88.  https://doi.org/10.1210/me.2006-0225 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cassamo Ussemane Mussagy
    • 1
  • James Winterburn
    • 2
  • Valéria Carvalho Santos-Ebinuma
    • 1
  • Jorge Fernando Brandão Pereira
    • 1
  1. 1.Department of Bioprocesses and Biotechnology, School of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
  2. 2.School of Chemical Engineering and Analytical ScienceThe University of ManchesterManchesterUK

Personalised recommendations