Advertisement

Expression of cry genes in Bacillus thuringiensis biotechnology

  • Qi Peng
  • Qingyue Yu
  • Fuping SongEmail author
Mini-Review
  • 92 Downloads

Abstract

Bacillus thuringiensis is a gram-positive, spore-forming bacterium that produces insecticidal crystal proteins during sporulation. The production of these crystals results primarily from the expression of cry genes. In this review, we focus on the expression and application of cry genes directed by both cry gene promoters and non-cry gene promoters in different hosts. However, not all cry genes and niches are compatible with B. thuringiensis. New delivery systems offsetting the current limitations in B. thuringiensis application are needed to improve Cry production, niche fitness, and persistence. This review examines currently available research and highlights areas in need of further research and development for more effective production and utilization of Cry insecticidal proteins.

Keywords

cry gene promoters Non-cry gene promoters Bacterial insecticide Bacillus thuringiensis biotechnology 

Notes

Funding

This work was funded by the National Natural Science Foundation (31530095) and the National Key Research and Development Program of China (2017YFD0200400).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No human or animal studies were performed for this review.

References

  1. Aceves-Diez AE, Robles-Burgueno R, de la Torre M (2007) SKPDT is a signaling peptide that stimulates sporulation and cry1Aa expression in Bacillus thuringiensis but not in Bacillus subtilis. Appl Microbiol Biotechnol 76(1):203–209.  https://doi.org/10.1007/s00253-007-0982-0 CrossRefPubMedGoogle Scholar
  2. Adang MJ, Brody MS, Cardineau G, Eagan N, Roush RT, Shewmaker CK, Jones A, Oakes JV, McBride KE (1993) The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol Biol 21(6):1131–1145CrossRefGoogle Scholar
  3. Adegawa S, Nakama Y, Endo H, Shinkawa N, Kikuta S, Sato R (2017) The domain II loops of Bacillus thuringiensis Cry1Aa form an overlapping interaction site for two Bombyx mori larvae functional receptors, ABC transporter C2 and cadherin-like receptor. Biochim Biophys Acta 1865(2):220–231.  https://doi.org/10.1016/j.bbapap.2016.11.011
  4. Agaisse H, Lereclus D (1994a) Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. J Bacteriol 176(15):4734–4741CrossRefGoogle Scholar
  5. Agaisse H, Lereclus D (1994b) Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis. Mol Microbiol 13(1):97–107CrossRefGoogle Scholar
  6. Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177(21):6027–6032CrossRefGoogle Scholar
  7. Alberghini S, Filippini R, Marchetti E, Dindo ML, Shevelev AB, Battisti A, Squartini A (2005) Construction of a Pseudomonas sp. derivative carrying the cry9Aa gene from Bacillus thuringiensis and a proposal for new standard criteria to assess entomocidal properties of bacteria. Res Microbiol 156(5-6):690–699.  https://doi.org/10.1016/j.resmic.2005.02.003
  8. Amadio AF, Navas LE, Sauka DH, Berretta MF, Benintende GB, Zandomeni RO (2013) Identification, cloning and expression of an insecticide cry8 gene from Bacillus thuringiensis INTA Fr7-4. J Mol Microbiol Biotechnol 23(6):401–409.  https://doi.org/10.1159/000353206 CrossRefPubMedGoogle Scholar
  9. AP DEL, Lorenzon LB, Vianna AM, Santos FD, Pinto LS, Aires Berne ME, Leite FP (2016) Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus. Parasitology 143(12):1665–1671.  https://doi.org/10.1017/S0031182016001451
  10. Azizoglu U, Ayvaz A, Yilmaz S, Karaborklu S, Temizgul R (2016) Expression of cry1Ab gene from a novel Bacillus thuringiensis strain SY49-1 active on pest insects. Braz J Microbiol 47(3):597–602.  https://doi.org/10.1016/j.bjm.2016.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barboza-Corona JE, Park HW, Bideshi DK, Federici BA (2012) The 60-kilodalton protein encoded by orf2 in the cry19A operon of Bacillus thuringiensis subsp. jegathesan functions like a C-terminal crystallization domain. Appl Environ Microbiol 78(6):2005–2012.  https://doi.org/10.1128/AEM.06750-11 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Baum JA, Malvar T (1995) Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol 18(1):1–12CrossRefGoogle Scholar
  13. Bi Y, Zhang Y, Shu C, Crickmore N, Wang Q, Du L, Song F, Zhang J (2015) Genomic sequencing identifies novel Bacillus thuringiensis Vip1/Vip2 binary and Cry8 toxins that have high toxicity to Scarabaeoidea larvae. Appl Microbiol Biotechnol 99(2):753–760.  https://doi.org/10.1007/s00253-014-5966-2 CrossRefPubMedGoogle Scholar
  14. Boonserm P, Pornwiroon W, Katzenmeier G, Panyim S, Angsuthanasombat C (2004) Optimised expression in Escherichia coli and purification of the functional form of the Bacillus thuringiensis Cry4Aa delta-endotoxin. Protein Expr Purif 35(2):397–403.  https://doi.org/10.1016/j.pep.2004.02.016 CrossRefPubMedGoogle Scholar
  15. Bravo A, Agaisse H, Salamitou S, Lereclus D (1996) Analysis of cryIAa expression in sigE and sigK mutants of Bacillus thuringiensis. Mol Gen Genet 250(6):734–741PubMedGoogle Scholar
  16. Briza J, Pavingerova D, Vlasak J, Niedermeierova H (2013) Norway spruce (Picea abies) genetic transformation with modified Cry3A gene of Bacillus thuringiensis. Acta Biochim Pol 60(3):395–400Google Scholar
  17. Buasri W, Panbangred W (2012) Large crystal toxin formation in chromosomally engineered Bacillus thuringiensis subsp. aizawai due to sigmaE accumulation. Appl Environ Microbiol 78(6):1682–1691.  https://doi.org/10.1128/AEM.06505-11 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cao J, Bates SL, Zhao JZ, Shelton AM, Earle ED (2006) Bacillus thuringiensis protein production, signal transduction, and insect control in chemically inducible PR-1a/cry1Ab broccoli plants. Plant Cell Rep 25(6):554–560.  https://doi.org/10.1007/s00299-005-0091-4 CrossRefPubMedGoogle Scholar
  19. Carozzi NB, Warren GW, Desai N, Jayne SM, Lotstein R, Rice DA, Evola S, Koziel MG (1992) Expression of a chimeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco. Plant Mol Biol 20(3):539–548CrossRefGoogle Scholar
  20. Chak KF, Tseng MY, Yamamoto T (1994) Expression of the crystal protein gene under the control of the alpha-amylase promoter in Bacillus thuringiensis strains. Appl Environ Microbiol 60(7):2304–2310PubMedPubMedCentralGoogle Scholar
  21. Chaoyin Y, Wei S, Sun M, Lin L, Faju C, Zhengquan H, Ziniu Y (2007) Comparative study on effect of different promoters on expression of cry1Ac in Bacillus thuringiensis chromosome. J Appl Microbiol 103(2):454–461.  https://doi.org/10.1111/j.1365-2672.2006.03269.x CrossRefPubMedGoogle Scholar
  22. Christov NK, Imaishi H, Ohkawa H (1999) Green-tissue-specific expression of a reconstructed cry1C gene encoding the active fragment of Bacillus thuringiensis delta-endotoxin in haploid tobacco plants conferring resistance to Spodoptera litura. Biosci Biotechnol Biochem 63(8):1433–1444Google Scholar
  23. Crickmore N, Wheeler VC, Ellar DJ (1994) Use of an operon fusion to induce expression and crystallisation of a Bacillus thuringiensis delta-endotoxin encoded by a cryptic gene. Mol Gen Genet 242(3):365–368CrossRefGoogle Scholar
  24. Datta K, Vasquez A, Tu J, Torrizo L, Alam MF, Oliva N, Abrigo E, Khush GS, Datta SK (1998) Constitutive and tissue-specific differential expression of the cryIA(b) gene in transgenic rice plants conferring resistance to rice insect pest. Theor Appl Genet 97(1-2):20–30.  https://doi.org/10.1007/s001220050862 CrossRefGoogle Scholar
  25. de Souza MT, Lecadet MM, Lereclus D (1993) Full expression of the cryIIIA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription. J Bacteriol 175(10):2952–2960CrossRefGoogle Scholar
  26. Delecluse A, Poncet S, Klier A, Rapoport G (1993) Expression of cryIVA and cryIVB genes, independently or in combination, in a crystal-negative strain of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 59(11):3922–3927PubMedPubMedCentralGoogle Scholar
  27. Dementiev A, Board J, Sitaram A, Hey T, Kelker MS, Xu X, Hu Y, Vidal-Quist C, Chikwana V, Griffin S, McCaskill D, Wang NX, Hung SC, Chan MK, Lee MM, Hughes J, Wegener A, Aroian RV, Narva KE, Berry C (2016) The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins. BMC Biol 14:71.  https://doi.org/10.1186/s12915-016-0295-9 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Deng C, Peng Q, Song F, Lereclus D (2014) Regulation of cry gene expression in Bacillus thuringiensis. Toxins (Basel) 6(7):2194–2209.  https://doi.org/10.3390/toxins6072194 CrossRefGoogle Scholar
  29. Durmaz E, Hu Y, Aroian RV, Klaenhammer TR (2015) Intracellular and extracellular expression of Bacillus thuringiensis crystal protein Cry5B in Lactococcus lactis for use as an anthelminthic. Appl Environ Microbiol 82(4):1286–1294.  https://doi.org/10.1128/AEM.02365-15 CrossRefPubMedGoogle Scholar
  30. El-Menofy W, Osman G, Assaeedi A, Salama M (2014) A novel recombinant baculovirus overexpressing a Bacillus thuringiensis Cry1Ab toxin enhances insecticidal activity. Biol Proced Online 16:7.  https://doi.org/10.1186/1480-9222-16-7 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Garcia-Gomez BI, Sanchez J, Martinez de Castro DL, Ibarra JE, Bravo A, Soberon M (2013) Efficient production of Bacillus thuringiensis Cry1AMod toxins under regulation of cry3Aa promoter and single cysteine mutations in the protoxin region. Appl Environ Microbiol 79(22):6969–6973.  https://doi.org/10.1128/AEM.02546-13 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Giles KL, Hellmich RL, Iverson CT, Lewis LC (2000) Effects of transgenic Bacillus thuringiensis maize grain on B. thuringiensis-susceptible Plodia interpunctella (Lepidoptera: Pyralidae). J Econ Entomol 93(3):1011–1016Google Scholar
  33. Gomez I, Sanchez J, Munoz-Garay C, Matus V, Gill SS, Soberon M, Bravo A (2014) Bacillus thuringiensis Cry1A toxins are versatile proteins with multiple modes of action: two distinct pre-pores are involved in toxicity. Biochem J 459(2):383–396.  https://doi.org/10.1042/BJ20131408 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gu K, Mao H, Yin Z (2014) Production of marker-free transgenic Jatropha curcas expressing hybrid Bacillus thuringiensis delta-endotoxin Cry1Ab/1Ac for resistance to larvae of tortrix moth (Archips micaceanus). Biotechnol Biofuels 7:68.  https://doi.org/10.1186/1754-6834-7-68
  35. Guan P, Dai X, Zhu J, Li Q, Li S, Wang S, Li P, Zheng A (2014) Bacillus thuringiensis subsp. sichuansis strain MC28 produces a novel crystal protein with activity against Culex quinquefasciatus larvae. World J Microbiol Biotechnol 30(4):1417–1421.  https://doi.org/10.1007/s11274-013-1548-1
  36. Hagh ZG, Rahnama H, Panahandeh J, Rouz BBK, Jafari KMA, Mahna N (2009) Green-tissue-specific, C-4-PEPC-promoter-driven expression of Cry1Ab makes transgenic potato plants resistant to tuber moth (Phthorimaea operculella, Zeller). Plant Cell Rep 28(12):1869–1879.  https://doi.org/10.1007/s00299-009-0790-3
  37. Hayakawa T, Sakakibara A, Ueda S, Azuma Y, Ide T, Takebe S (2017) Cry46Ab from Bacillus thuringiensis TK-E6 is a new mosquitocidal toxin with aerolysin-type architecture. Insect Biochem Mol Biol 87:100–106.  https://doi.org/10.1016/j.ibmb.2017.06.015 CrossRefPubMedGoogle Scholar
  38. Herrero S, Gonzalez-Cabrera J, Ferre J, Bakker PL, de Maagd RA (2004) Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Biochem J 384(Pt 3):507–513.  https://doi.org/10.1042/BJ20041094
  39. Huang Z, Guan C, Guan X (2004) Cloning, characterization and expression of a new cry1Ab gene from Bacillus thuringiensis WB9. Biotechnol Lett 26(20):1557–1561.  https://doi.org/10.1023/B:BILE.0000045652.00137.1f CrossRefPubMedGoogle Scholar
  40. Huang KX, Badger M, Haney K, Evans SL (2007) Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas fluorescens. Protein Expr Purif 53(2):325–330.  https://doi.org/10.1016/j.pep.2007.01.010
  41. Huang T, Lin Q, Qian X, Zheng Y, Yao J, Wu H, Li M, Jin X, Pan X, Zhang L, Guan X (2018) Nematicidal activity of Cry1Ea11 from Bacillus thuringiensis BRC-XQ12 against the pine wood nematode (Bursaphelenchus xylophilus). Phytopathology 108(1):44–51.  https://doi.org/10.1094/PHYTO-05-17-0179-R
  42. Iatsenko I, Boichenko I, Sommer RJ (2014) Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Appl Environ Microbiol 80(10):3266–3275.  https://doi.org/10.1128/AEM.00464-14 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jain D, Udayasuriyan V, Arulselvi PI, Dev SS, Sangeetha P (2006) Cloning, characterization, and expression of a new cry2Ab gene from Bacillus thuringiensis strain 14-1. Appl Biochem Biotechnol 128(3):185–194CrossRefGoogle Scholar
  44. Ji F, Zhu Y, Ju S, Zhang R, Yu Z, Sun M (2009) Promoters of crystal protein genes do not control crystal formation inside exosporium of Bacillus thuringiensis ssp. finitimus strain YBT-020. FEMS Microbiol Lett 300(1):11-17.  https://doi.org/10.1111/j.1574-6968.2009.01743.x
  45. Jia Y, Zhao C, Wang Q, Shu C, Feng X, Song F, Zhang J (2014) A genetically modified broad-spectrum strain of Bacillus thuringiensis toxic against Holotrichia parallela, Anomala corpulenta and Holotrichia oblita. World J Microbiol Biotechnol 30(2):595–603.  https://doi.org/10.1007/s11274-013-1470-6
  46. Jouzani GS, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 101(7):2691–2711.  https://doi.org/10.1007/s00253-017-8175-y CrossRefPubMedGoogle Scholar
  47. Khanna HK, Raina SK (2002) Elite indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Res 11(4):411–423.  https://doi.org/10.1023/A:1016378606189
  48. Khasdan V, Sapojnik M, Zaritsky A, Horowitz AR, Boussiba S, Rippa M, Manasherob R, Ben-Dov E (2007) Larvicidal activities against agricultural pests of transgenic Escherichia coli expressing combinations of four genes from Bacillus thuringiensis. Arch Microbiol 188(6):643–653.  https://doi.org/10.1007/s00203-007-0285-y CrossRefPubMedGoogle Scholar
  49. Komano T, Takabe S, Sakai H (2000) Transcription of the insecticidal crystal protein genes of Bacillus thuringiensis. Biotechnol Annu Rev 5:131–154CrossRefGoogle Scholar
  50. Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nat Biotechnol 11(2):194–200CrossRefGoogle Scholar
  51. Krishnan V, Domanska B, Elhigazi A, Afolabi F, West MJ, Crickmore N (2017) The human cancer cell active toxin Cry41Aa from Bacillus thuringiensis acts like its insecticidal counterparts. Biochem J 474(10):1591–1602.  https://doi.org/10.1042/BCJ20170122 CrossRefPubMedGoogle Scholar
  52. Lee HK, Gill SS (1997) Molecular cloning and characterization of a novel mosquitocidal protein gene from Bacillus thuringiensis subsp. fukuokaensis. Appl Environ Microbiol 63(12):4664–4670PubMedPubMedCentralGoogle Scholar
  53. Li XQ, Wei JZ, Tan A, Aroian RV (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5(4):455–464.  https://doi.org/10.1111/j.1467-7652.2007.00257.x CrossRefPubMedGoogle Scholar
  54. Liu X, Zhang C, Li X, Tu J (2016) Pyramiding and evaluation of both a foreign Bacillus thuringiensis and a Lysine-rich proteingene in the eliteindicarice 9311. Breed Sci 66(4):591–598CrossRefGoogle Scholar
  55. Liu Y, Wang Y, Shu C, Lin K, Song F, Bravo A, Soberon M, Zhang J (2018) Cry64Ba and Cry64Ca, two ETX/MTX2-type Bacillus thuringiensis insecticidal proteins active against Hemipteran pests. Appl Environ Microbiol 84(3).  https://doi.org/10.1128/AEM.01996-17
  56. Mahmoud SB, Ramos JE, Shatters RG Jr, Hall DG, Lapointe SL, Niedz RP, Rouge P, Cave RD, Borovsky D (2017) Expression of Bacillus thuringiensis cytolytic toxin (Cyt2Ca1) in citrus roots to control Diaprepes abbreviatus larvae. Pestic Biochem Physiol 136:1–11.  https://doi.org/10.1016/j.pestbp.2016.07.006
  57. Martinez-Solis M, Pinos D, Endo H, Portugal L, Sato R, Ferre J, Herrero S, Hernandez-Martinez P (2018) Role of Bacillus thuringiensis Cry1A toxins domains in the binding to the ABCC2 receptor from Spodoptera exigua. Insect Biochem Mol Biol 101:47–56.  https://doi.org/10.1016/j.ibmb.2018.07.006 CrossRefPubMedGoogle Scholar
  58. Navas LE, Berretta MF, Perez MP, Amadio AF, Ortiz EM, Sauka DH, Benintende GB, Zandomeni RO (2014) Sequence and expression of two cry8 genes from Bacillus thuringiensis INTA Fr7-4, a native strain from Argentina. J Mol Microbiol Biotechnol 24(4):241–248.  https://doi.org/10.1159/000365929 CrossRefPubMedGoogle Scholar
  59. Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan NA, Ghosh M, Sen SK (1997) Transgenic elite indica rice plants expressing CryIAc delta-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc Natl Acad Sci U S A 94(6):2111–2116Google Scholar
  60. Ogunjimi AA, Chandler JM, Gbenle GO, Olukoya DK, Akinrimisi EO (2002) Heterologous expression of cry2 gene from a local strain of Bacillus thuringiensis isolated in Nigeria. Biotechnol Appl Biochem 36(Pt 3):241–246.  https://doi.org/10.1042/BA20020053
  61. Pacheco S, Gomez I, Arenas I, Saab-Rincon G, Rodriguez-Almazan C, Gill SS, Bravo A, Soberon M (2009) Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “ping pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J Biol Chem 284(47):32750–32757.  https://doi.org/10.1074/jbc.M109.024968 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pan Z, Xu L, Zhu Y, Shi H, Chen Z, Chen M, Chen Q, Liu B (2014) Characterization of a new cry2Ab gene of Bacillus thuringiensis with high insecticidal activity against Plutella xylostella L. World J Microbiol Biotechnol 30(10):2655–2662.  https://doi.org/10.1007/s11274-014-1689-x CrossRefPubMedGoogle Scholar
  63. Park HW, Ge B, Bauer LS, Federici BA (1998) Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Appl Environ Microbiol 64(10):3932–3938PubMedPubMedCentralGoogle Scholar
  64. Park H, Bideshi DK, Johnson JJ, Federici BA (1999) Differential enhancement of Cry2A versus Cry11A yields in Bacillus thuringiensis by use of the cry3A STAB mRNA sequence. FEMS Microbiol Lett 181(2):319–327CrossRefGoogle Scholar
  65. Park HW, Bideshi DK, Federici BA (2000) Molecular genetic manipulation of truncated Cry1C protein synthesis in Bacillus thuringiensis to improve stability and yield. Appl Environ Microbiol 66(10):4449–4455CrossRefGoogle Scholar
  66. Park HW, Delecluse A, Federici BA (2001) Construction and characterization of a recombinant Bacillus thuringiensis subsp. israelensis strain that produces Cry11B. J Invertebr Pathol 78(1):37–44.  https://doi.org/10.1006/jipa.2001.5038 CrossRefPubMedGoogle Scholar
  67. Peng D, Luo X, Zhang N, Guo S, Zheng J, Chen L, Sun M (2018) Small RNA-mediated Cry toxin silencing allows Bacillus thuringiensis to evade Caenorhabditis elegans avoidance behavioral defenses. Nucleic Acids Res 46(1):159–173.  https://doi.org/10.1093/nar/gkx959 CrossRefPubMedGoogle Scholar
  68. Perez-Garcia G, Basurto-Rios R, Ibarra JE (2010) Potential effect of a putative sigma(H)-driven promoter on the over expression of the Cry1Ac toxin of Bacillus thuringiensis. J Invertebr Pathol 104(2):140–146.  https://doi.org/10.1016/j.jip.2010.02.010 CrossRefPubMedGoogle Scholar
  69. Reddy VP, Rao NN, Devi PS, Sivaramakrishnan S, Narasu ML, Kumar VD (2013) Cloning, characterization, and expression of a new cry1Ab gene from DOR Bt-1, an indigenous isolate of Bacillus thuringiensis. Mol Biotechnol 54(3):795–802.  https://doi.org/10.1007/s12033-012-9627-3 CrossRefPubMedGoogle Scholar
  70. Reyaz AL, Arulselvi PI (2016) Cloning, characterization and expression of a novel haplotype cry2A-type gene from Bacillus thuringiensis strain SWK1, native to Himalayan valley Kashmir. J Invertebr Pathol 136:1–6.  https://doi.org/10.1016/j.jip.2016.02.005 CrossRefPubMedGoogle Scholar
  71. Reyaz AL, Gunapriya L, Indra Arulselvi P (2017) Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. 3 Biotech 7(2):143.  https://doi.org/10.1007/s13205-017-0756-z CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rodriguez-Almazan C, Reyes EZ, Zuniga-Navarrete F, Munoz-Garay C, Gomez I, Evans AM, Likitvivatanavong S, Bravo A, Gill SS, Soberon M (2012) Cadherin binding is not a limiting step for Bacillus thuringiensis subsp. israelensis Cry4Ba toxicity to Aedes aegypti larvae. Biochem J 443(3):711–717.  https://doi.org/10.1042/BJ20111579
  73. Roh JY, Lee IH, Li MS, Chang JH, Choi JY, Boo KS, Je YH (2004) Expression of a recombinant Cry1Ac crystal protein fused with a green fluorescent protein in Bacillus thuringiensis subsp. kurstaki Cry-B. J Microbiol 42(4):340–345PubMedGoogle Scholar
  74. Ruan L, Crickmore N, Peng D, Sun M (2015) Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis? Trends Microbiol 23(6):341–346.  https://doi.org/10.1016/j.tim.2015.02.011 CrossRefPubMedGoogle Scholar
  75. Saitoh H, Hwang SH, Park YS, Higuchi K, Mizuki E, Ohba M (2000) Cloning and characterization of a Bacillus thuringiensis serovar higo gene encoding a novel class of the delta-endotoxin protein, Cry27A, specifically active on the Anopheles mosquito. Syst Appl Microbiol 23(1):25–30Google Scholar
  76. Sajid M, Geng C, Li M, Wang Y, Liu H, Zheng J, Peng D, Sun M (2018) Whole-genome analysis of Bacillus thuringiensis revealing partial genes as a source of novel cry toxins. Appl Environ Microbiol 84(14).  https://doi.org/10.1128/AEM.00277-18
  77. Sakano Y, Park HW, Bideshi DK, Ge B, Federici BA (2017) Contributions of 5'-UTR and 3'-UTR cis elements to Cyt1Aa synthesis in Bacillus thuringiensis subsp. israelensis. J Invertebr Pathol 149:66–75.  https://doi.org/10.1016/j.jip.2017.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Salamitou S, Agaisse H, Bravo A, Lereclus D (1996) Genetic analysis of cryIIIA gene expression in Bacillus thuringiensis. Microbiology 142(Pt 8):2049–2055.  https://doi.org/10.1099/13500872-142-8-2049 CrossRefPubMedGoogle Scholar
  79. Saleem F, Shakoori AR (2017) The first Cry2Ac-type protein toxic to Helicoverpa armigera: cloning and overexpression of Cry2ac7 Gene from SBS-BT1 strain of Bacillus thuringiensis. Toxins (Basel) 9(11).  https://doi.org/10.3390/toxins9110358
  80. Sanchis V, Agaisse H, Chaufaux J, Lereclus D (1996) Construction of new insecticidal Bacillus thuringiensis recombinant strains by using the sporulation non-dependent expression system of cryIIIA and a site specific recombination vector. J Biotechnol 48(1-2):81–96CrossRefGoogle Scholar
  81. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806PubMedPubMedCentralGoogle Scholar
  82. Sedlak M, Walter T, Aronson A (2000) Regulation by overlapping promoters of the rate of synthesis and deposition into crystalline inclusions of Bacillus thuringiensis delta-endotoxins. J Bacteriol 182(3):734–741CrossRefGoogle Scholar
  83. Shu C, Zhang F, Chen G, Joseph L, Barqawi A, Evans J, Song F, Li G, Zhang J, Crickmore N (2017) A natural hybrid of a Bacillus thuringiensis Cry2A toxin implicates Domain I in specificity determination. J Invertebr Pathol 150:35–40.  https://doi.org/10.1016/j.jip.2017.09.002 CrossRefPubMedGoogle Scholar
  84. Singh S, Kumar NR, Maniraj R, Lakshmikanth R, Rao KYS, Muralimohan N, Arulprakash T, Karthik K, Shashibhushan NB, Vinutha T, Pattanayak D, Dash PK, Kumar PA, Sreevathsa R (2018) Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, Helicoverpa armigera. Sci Rep 8(1):8820.  https://doi.org/10.1038/s41598-018-26,358-9 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Somwatcharajit R, Tiantad I, Panbangred W (2014) Coexpression of the silent cry2Ab27 together with cry1 genes in Bacillus thuringiensis subsp. aizawai SP41 leads to formation of amorphous crystal toxin and enhanced toxicity against Helicoverpa armigera. J Invertebr Pathol 116:48–55.  https://doi.org/10.1016/j.jip.2013.12.008 CrossRefPubMedGoogle Scholar
  86. Stewart CN Jr, Adang MJ, All JN, Raymer PL, Ramachandran S, Parrott WA (1996) Insect Control and Dosage Effects in Transgenic Canola Containing a Synthetic Bacillus thuringiensis cryIAc Gene. Plant Physiol 112(1):115–120CrossRefGoogle Scholar
  87. Sun Y, Zhao Q, Xia L, Ding X, Hu Q, Federici BA, Park HW (2013) Identification and characterization of three previously undescribed crystal proteins from Bacillus thuringiensis subsp. jegathesan. Appl Environ Microbiol 79(11):3364–3370.  https://doi.org/10.1128/AEM.00078-13 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Sun Y, Zhao Q, Zheng D, Ding X, Wang J, Hu Q, Yuan Z, Park HW, Xia L (2014) Construction and characterization of the interdomain chimeras using Cry11Aa and Cry11Ba from Bacillus thuringiensis and identification of a possible novel toxic chimera. Biotechnol Lett 36(1):105–111.  https://doi.org/10.1007/s10529-013-1330-3 CrossRefPubMedGoogle Scholar
  89. Sun Y, Fu Z, He X, Yuan C, Ding X, Xia L (2016) Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider. J Invertebr Pathol 135:60–62.  https://doi.org/10.1016/j.jip.2015.02.005 CrossRefPubMedGoogle Scholar
  90. Sutton DW, Havstad PK, Kemp JD (1992) Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants. Transgenic Res 1(5):228–236CrossRefGoogle Scholar
  91. Tanaka S, Miyamoto K, Noda H, Endo H, Kikuta S, Sato R (2016) Single amino acid insertions in extracellular loop 2 of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa toxins. Peptides 78:99–108.  https://doi.org/10.1016/j.peptides.2016.01.006 CrossRefPubMedGoogle Scholar
  92. Tang W, Tian YC (2003) Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. J Exp Bot 54(383):835–844.  https://doi.org/10.1093/jxb/erg071
  93. Tounsi S, Aoun AE, Blight M, Rebai A, Jaoua S (2006) Evidence of oral toxicity of Photorhabdus temperata strain K122 against Prays oleae and its improvement by heterologous expression of Bacillus thuringiensis cry1Aa and cry1Ia genes. J Invertebr Pathol 91(2):131–135.  https://doi.org/10.1016/j.jip.2005.11.004
  94. Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q, Khush GS, Datta SK (2000) Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis delta-endotoxin. Nat Biotechnol 18(10):1101–1104.  https://doi.org/10.1038/80310 CrossRefPubMedGoogle Scholar
  95. Walter T, Aronson A (1999) Specific binding of the E2 subunit of pyruvate dehydrogenase to the upstream region of Bacillus thuringiensis protoxin genes. J Biol Chem 274(12):7901–7906CrossRefGoogle Scholar
  96. Wang B, Wang H, Xiong J, Zhou Q, Wu H, Xia L, Li L, Yu Z (2017) A proteomic analysis provides novel insights into the stress responses of Caenorhabditis elegans towards nematicidal Cry6A toxin from Bacillus thuringiensis. Sci Rep 7(1):14170.  https://doi.org/10.1038/s41598-017-14428-3 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Wang Y, Liu Y, Zhang J, Crickmore N, Song F, Gao J, Shu C (2018a) Cry78Aa, a novel Bacillus thuringiensis insecticidal protein with activity against Laodelphax striatellus and Nilaparvata lugens. J Invertebr Pathol 158:1–5.  https://doi.org/10.1016/j.jip.2018.07.007 CrossRefPubMedGoogle Scholar
  98. Wang Z, Fang L, Zhou Z, Pacheco S, Gomez I, Song F, Soberon M, Zhang J, Bravo A (2018b) Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis). J Biol Chem 293(29):11447–11,458.  https://doi.org/10.1074/jbc.RA118.003490
  99. Wasano N, Saitoh H, Maeda M, Ohgushi A, Mizuki E, Ohba M (2005) Cloning and characterization of a novel gene cry9Ec1 encoding lepidopteran-specific parasporal inclusion protein from a Bacillus thuringiensis serovar galleriae strain. Can J Microbiol 51(11):988–995.  https://doi.org/10.1139/w05-084 CrossRefPubMedGoogle Scholar
  100. Wong EY, Hironaka CM, Fischhoff DA (1992) Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants. Plant Mol Biol 20(1):81–93CrossRefGoogle Scholar
  101. Wu D, Federici BA (1995) Improved production of the insecticidal CryIVD protein in Bacillus thuringiensis using cryIA(c) promoters to express the gene for an associated 20-kDa protein. Appl Microbiol Biotechnol 42(5):697–702CrossRefGoogle Scholar
  102. Wunn J, Kloti A, Burkhardt PK, Biswas GC, Launis K, Iglesias VA, Potrykus I (1996) Transgenic Indica rice breeding line IR58 expressing a synthetic cryIA(b) gene from Bacillus thuringiensis provides effective insect pest control. Biotechnology (N Y) 14(2):171–176Google Scholar
  103. Xia L, Sun Y, Ding X, Fu Z, Mo X, Zhang H, Yuan Z (2005) Identification of cry-type genes on 20-kb DNA associated with Cry1 crystal proteins from Bacillus thuringiensis. Curr Microbiol 51(1):53–58.  https://doi.org/10.1007/s00284-005-4504-y
  104. Xia L, Long X, Ding X, Zhang Y (2009a) Increase in insecticidal toxicity by fusion of the cry1Ac gene from Bacillus thuringiensis with the neurotoxin gene hwtx-I. Curr Microbiol 58(1):52–57.  https://doi.org/10.1007/s00284-008-9265-y CrossRefPubMedGoogle Scholar
  105. Xia L, Zeng Z, Ding X, Huang F (2009b) The expression of a recombinant cry1Ac gene with subtilisin-like protease CDEP2 gene in acrystalliferous Bacillus thuringiensis by Red/ET homologous recombination. Curr Microbiol 59(4):386–392.  https://doi.org/10.1007/s00284-009-9449-0 CrossRefPubMedGoogle Scholar
  106. Xu L, Pan ZZ, Zhang J, Liu B, Zhu YJ, Chen QX (2016) Proteolytic activation of Bacillus thuringiensis Cry2Ab through a belt-and-braces approach. J Agric Food Chem 64(38):7195–7200.  https://doi.org/10.1021/acs.jafc.6b03111
  107. Yan F, Cheng X, Ding X, Yao T, Chen H, Li W, Hu S, Yu Z, Sun Y, Zhang Y, Xia L (2014) Improved insecticidal toxicity by fusing Cry1Ac of Bacillus thuringiensis with Av3 of Anemonia viridis. Curr Microbiol 68(5):604–609.  https://doi.org/10.1007/s00284-013-0516-1
  108. Yang CY, Pang JC, Kao SS, Tsen HY (2003) Enterotoxigenicity and cytotoxicity of Bacillus thuringiensis strains and development of a process for Cry1Ac production. J Agric Food Chem 51(1):100–105.  https://doi.org/10.1021/jf025863l CrossRefPubMedGoogle Scholar
  109. Yang H, Wang P, Peng Q, Rong R, Liu C, Lereclus D, Zhang J, Song F, Huang D (2012) Weak transcription of the cry1Ac gene in nonsporulating Bacillus thuringiensis cells. Appl Environ Microbiol 78(18):6466–6474.  https://doi.org/10.1128/AEM.01229-12 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Yilmaz S, Azizoglu U, Ayvaz A, Temizgul R, Atciyurt ZB, Karaborklu S (2017) Cloning and expression of cry2Aa from native Bacillus thuringiensis strain SY49-1 and its insecticidal activity against Culex pipiens (Diptera: Culicidae). Microb Pathog 105:81–85.  https://doi.org/10.1016/j.micpath.2017.02.016 CrossRefPubMedGoogle Scholar
  111. Zhang W, Zhang J, Crickmore N, Wu Z, Yang Y, Qian J, Wu H, Wang R, Fang X (2014) Identification of a mosquitocidal toxin from Bacillus thuringiensis using mass spectrometry. World J Microbiol Biotechnol 30(12):3273–3277.  https://doi.org/10.1007/s11274-014-1744-7 CrossRefPubMedGoogle Scholar
  112. Zhang X, Gao T, Peng Q, Song L, Zhang J, Chai Y, Sun D, Song F (2018) A strong promoter of a non-cry gene directs expression of the cry1Ac gene in Bacillus thuringiensis. Appl Microbiol Biotechnol 102(8):3687–3699.  https://doi.org/10.1007/s00253-018-8836-5 CrossRefPubMedGoogle Scholar
  113. Zheng SJ, Henken B, de Maagd RA, Purwito A, Krens FA, Kik C (2005) Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hubner) in transgenic Bt-shallots (Allium cepa L.). Transgenic Res 14(3):261–272Google Scholar
  114. Zheng D, Valdez-Cruz NA, Armengol G, Sevrez C, Munoz-Olaya JM, Yuan Z, Orduz S, Crickmore N (2007) Co-expression of the mosquitocidal toxins Cyt1Aa and Cry11Aa from Bacillus thuringiensis subsp. israelensis in Asticcacaulis excentricus. Curr Microbiol 54(1):58–62.  https://doi.org/10.1007/s00284-006-0352-7 CrossRefPubMedGoogle Scholar
  115. Zheng Q, Wang G, Zhang Z, Qu N, Zhang Q, Peng Q, Zhang J, Gao J, Song F (2014) Expression of cry1Ac gene directed by PexsY promoter of the exsY gene encoding component protein of exosporium basal layer in Bacillus thuringiensis. Wei Sheng Wu Xue Bao 54(10):1138–1145PubMedGoogle Scholar
  116. Zhou C, Zheng Q, Peng Q, Du L, Shu C, Zhang J, Song F (2014) Screening of cry-type promoters with strong activity and application in Cry protein encapsulation in a sigK mutant. Appl Microbiol Biotechnol 98(18):7901–7909.  https://doi.org/10.1007/s00253-014-5874-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations