Advertisement

Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges

  • Muhammad Shahid Riaz Rajoka
  • Liqing ZhaoEmail author
  • Hafiza Mahreen Mehwish
  • Yiguang WuEmail author
  • Shahid Mahmood
Mini-Review
  • 125 Downloads

Abstract

Chitosan is a naturally occurring biodegradable as well as a non-toxic polymer generated from chitin through alkaline deacetylation reaction, and it is insoluble in organic/inorganic solvents and water. Furthermore, chitosan is one of the most plentiful cationic polymers in natural surroundings. Due to its non-toxicity and biocompatibility, chitosan is extensively employed in industrial, biomedical, food, pharmaceutical, environmental, and agricultural industry. Chitosan-based biomaterials exhibit great potential in various biotechnological applications, such as anti-hypertensive therapy, anti-oxidant, anti-microbial, anti-allergic, immunostimulant, cancer therapy, delivery of genetic materials, delivery of bone morphogenetic type-2, wound healing, treatment of wastewater, hypocholesterolemic, and bio-imaging. Therefore, this review mainly focuses on the biotechnological potential of chitosan and its derivatives as well as presents the potential of chitosan-based biomaterial/pharmaceutical for the prevention of various life-threating chronic disorders.

Keywords

Chitosan and its derivative Biotechnological potentials Anti-cancerous Anti-oxidant Bio-imaging 

Notes

Acknowledgement

The authors are very thankful to Stephan Wang for his help to revise the manuscript language.

Authors’ contributions

Muhammad Shahid Riaz Rajoka, Liqing Zhao, Hafiza Mahreen Mehwish, and Wu wrote the review. All authors reviewed the manuscript.

Funding information

This work was supported by the National Natural Science Foundation of China (21606152), the Natural Science Foundation of Guangdong Province (2016A030313053), and the Special Fund for Development of Strategic Emerging Industries in Shenzhen (JCYJ20160520174823939, JCYJ20170817100522830, 20170424181248489).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adhikari U, Rijal NP, Khanal S, Pai D, Sankar J, Bhattarai N (2016) Magnesium incorporated chitosan based scaffolds for tissue engineering applications. Bioact Mater 1(2):132–139.  https://doi.org/10.1016/j.bioactmat.2016.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aiba S-i (1992) Studies on chitosan: 4. lysozymic hydrolysis of partially N-acetylated chitosans. Int J Biol Macromol 14(4):225–228.  https://doi.org/10.1016/S0141-8130(05)80032-7 CrossRefPubMedGoogle Scholar
  3. Akbuğa J, Özbaş-Turan S, Erdoğan N (2004) Plasmid-DNA loaded chitosan microspheres for in vitro IL-2 expression. Eur J Pharm Biopharm 58(3):501–507.  https://doi.org/10.1016/j.ejpb.2004.04.015 CrossRefPubMedGoogle Scholar
  4. Anraku M, Fujii T, Kondo Y, Kojima E, Hata T, Tabuchi N, Tsuchiya D, Goromaru T, Tsutsumi H, Kadowaki D, Maruyama T, Otagiri M, Tomida H (2011) Antioxidant properties of high molecular weight dietary chitosan in vitro and in vivo. Carbohydr Polym 83(2):501–505.  https://doi.org/10.1016/j.carbpol.2010.08.009 CrossRefGoogle Scholar
  5. Anraku M, Hiraga A, Iohara D, Uekama K, Tomida H, Otagiri M, Hirayama F (2014) Preparation and antioxidant activity of PEGylated chitosans with different particle sizes. Int J Biol Macromol 70:64–69.  https://doi.org/10.1016/j.ijbiomac.2014.06.026 CrossRefPubMedGoogle Scholar
  6. Aoyagi S, Onishi H, Machida Y (2007) Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds. Int J Pharm 330(1):138–145.  https://doi.org/10.1016/j.ijpharm.2006.09.016 CrossRefPubMedGoogle Scholar
  7. Archana D, Singh BK, Dutta J, Dutta PK (2015) Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol 73:49–57.  https://doi.org/10.1016/j.ijbiomac.2014.10.055 CrossRefPubMedGoogle Scholar
  8. Auwal SM, Zarei M (2018) Enhanced physicochemical stability and efficacy of angiotensin I-converting enzyme (ACE) - inhibitory biopeptides by chitosan nanoparticles optimized using Box-Behnken design. Sci Rep 8(1):10411.  https://doi.org/10.1038/s41598-018-28659-5 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Auwal SM, Zarei M, Tan CP, Basri M, Saari N (2017) Improved in vivo efficacy of anti-hypertensive biopeptides encapsulated in chitosan nanoparticles fabricated by ionotropic gelation on spontaneously hypertensive rats. Nanomaterials 7(12).  https://doi.org/10.3390/nano7120421
  10. Azzam EMS, Eshaq G, Rabie AM, Bakr AA, Abd-Elaal AA, El Metwally AE, Tawfik SM (2016) Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution. Int J Biol Macromol 89:507–517.  https://doi.org/10.1016/j.ijbiomac.2016.05.004 CrossRefPubMedGoogle Scholar
  11. Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 104:1372–1382.  https://doi.org/10.1016/j.ijbiomac.2016.12.046 CrossRefPubMedGoogle Scholar
  12. Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A (2007) The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28(24):3478–3488.  https://doi.org/10.1016/j.biomaterials.2007.04.021 CrossRefPubMedGoogle Scholar
  13. Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine 1(2):117–128CrossRefGoogle Scholar
  14. Carroll EC, Jin L, Mori A, Munoz-Wolf N, Oleszycka E, Moran HBT, Mansouri S, McEntee CP, Lambe E, Agger EM, Andersen P, Cunningham C, Hertzog P, Fitzgerald KA, Bowie AG, Lavelle EC (2016) The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44(3):597–608.  https://doi.org/10.1016/j.immuni.2016.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chandy T, Sharma CP (1990) Chitosan-as a biomaterial. Biomater Artif Cells Artif Organs 18(1):1–24.  https://doi.org/10.3109/10731199009117286 CrossRefPubMedGoogle Scholar
  16. Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V, Singh SR, Pillai SR (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12).  https://doi.org/10.3390/ijms17121974
  17. Chavez de Paz LE, Resin A, Howard KA, Sutherland DS, Wejse PL (2011) Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms. Appl Environ Microbiol 77(11):3892–3895.  https://doi.org/10.1128/aem.02941-10 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, Lin JG (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin 25(7):932–936PubMedGoogle Scholar
  19. Chung MJ, Park JK, Park YI (2012) Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE–antigen complex-stimulated RBL-2H3 cells and asthma model mice. Int Immunopharmacol 12(2):453–459.  https://doi.org/10.1016/j.intimp.2011.12.027 CrossRefPubMedGoogle Scholar
  20. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792.  https://doi.org/10.1016/j.eurpolymj.2012.12.009 CrossRefGoogle Scholar
  21. Cui Z, Mumper RJ (2001) Chitosan-based nanoparticles for topical genetic immunization. J Control Release 75(3):409–419.  https://doi.org/10.1016/S0168-3659(01)00407-2 CrossRefPubMedGoogle Scholar
  22. Da Silva CA, Pochard P, Lee CG, Elias JA (2010) Chitin particles are multifaceted immune adjuvants. Am J Respir Crit Care Med 182(12):1482–1491.  https://doi.org/10.1164/rccm.200912-1877OC CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dai T, Tanaka M, Huang YY, Hamblin MR (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-Infect Ther 9(7):857–879.  https://doi.org/10.1586/eri.11.59 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Danilchenko SN, Kalinkevich OV, Pogorelov MV, Kalinkevich AN, Sklyar AM, Kalinichenko TG, Ilyashenko VY, Starikov VV, Bumeyster VI, Sikora VZ, Sukhodub LF (2011) Characterization and in vivo evaluation of chitosan-hydroxyapatite bone scaffolds made by one step coprecipitation method. J Biomed Mater Res A 96 A(4):639–647.  https://doi.org/10.1002/jbm.a.33017 CrossRefGoogle Scholar
  25. Domard A, Cartier N (1992) Glucosamine oligomers: 4. solid state-crystallization and sustained dissolution. Int J Biol Macromol 14(2):100–106.  https://doi.org/10.1016/0141-8130(92)90006-T CrossRefPubMedGoogle Scholar
  26. Dou J, Xu Q, Tan C, Wang W, Du Y, Bai X, Ma X (2009) Effects of chitosan oligosaccharides on neutrophils from glycogen-induced peritonitis mice model. Carbohydr Polym 75(1):119–124.  https://doi.org/10.1016/j.carbpol.2008.07.005 CrossRefGoogle Scholar
  27. Elieh Ali Komi D, Sharma L, Dela Cruz CS (2018) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54(2):213–223.  https://doi.org/10.1007/s12016-017-8600-0 CrossRefPubMedGoogle Scholar
  28. Fouda MMG, Wittke R, Knittel D, Schollmeyer E (2009) Use of chitosan/polyamine biopolymers based cotton as a model system to prepare antimicrobial wound dressing. Int J Diab Mellit 1(1):61–64.  https://doi.org/10.1016/j.ijdm.2009.05.005 CrossRefGoogle Scholar
  29. Ganan M, Carrascosa AV, Martinez-Rodriguez AJ (2009) Antimicrobial activity of chitosan against Campylobacter spp. and other microorganisms and its mechanism of action. J Food Prot 72(8):1735–1738CrossRefGoogle Scholar
  30. Gholipour-Kanani A, Bahrami SH, Samadi-Kochaksaraie A, Ahmadi-Tafti H, Rabbani S, Kororian A, Erfani E (2012) Effect of tissue-engineered chitosan-poly(vinyl alcohol) nanofibrous scaffolds on healing of burn wounds of rat skin. IET nanobiotechnol 6(4):129–135.  https://doi.org/10.1049/iet-nbt.2011.0070 CrossRefPubMedGoogle Scholar
  31. Ghormade V, Gholap H, Kale S, Kulkarni V, Bhat S, Paknikar K (2015) Fluorescent cadmium telluride quantum dots embedded chitosan nanoparticles: a stable, biocompatible preparation for bio-imaging. J Biomater Sci Polym Ed 26(1):42–56.  https://doi.org/10.1080/09205063.2014.982240 CrossRefPubMedGoogle Scholar
  32. Guo M, Ma Y, Wang C, Liu H, Li Q, Fei M (2015) Synthesis, anti-oxidant activity, and biodegradability of a novel recombinant polysaccharide derived from chitosan and lactose. Carbohydr Polym 118:218–223.  https://doi.org/10.1016/j.carbpol.2014.11.027 CrossRefPubMedGoogle Scholar
  33. Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27(1):1–93.  https://doi.org/10.1016/j.mam.2005.07.008 CrossRefGoogle Scholar
  34. Hari K, Pichaimani A, Kumpati P (2013) Acridine orange tethered chitosan reduced gold nanoparticles: a dual functional probe for combined photodynamic and photothermal therapy. RSC Adv 3(43):20471–20479.  https://doi.org/10.1039/c3ra44224a CrossRefGoogle Scholar
  35. Harish Prashanth KV, Tharanathan RN (2005) Depolymerized products of chitosan as potent inhibitors of tumor-induced angiogenesis. Biochim Biophys Acta 1722(1):22–29.  https://doi.org/10.1016/j.bbagen.2004.11.009 CrossRefPubMedGoogle Scholar
  36. Hassan MA, Omer AM, Abbas E, Baset WMA, Tamer TM (2018) Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives. Sci Rep 8(1):11416.  https://doi.org/10.1038/s41598-018-29,650-w CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89(2):151–165.  https://doi.org/10.1016/S0168-3659(03)00126-3 CrossRefPubMedGoogle Scholar
  38. Huang R, Mendis E, Kim S-K (2005) Improvement of ACE inhibitory activity of chitooligosaccharides (COS) by carboxyl modification. Bioorg Med Chem 13(11):3649–3655.  https://doi.org/10.1016/j.bmc.2005.03.034 CrossRefPubMedGoogle Scholar
  39. Huang R, Mendis E, Rajapakse N, Kim S-K (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78(20):2399–2408.  https://doi.org/10.1016/j.lfs.2005.09.039 CrossRefPubMedGoogle Scholar
  40. Issa JPM, do Nascimento C, Bentley MVLB, Del Bel EA, Iyomasa MM, Sebald W, de Albuquerque RF (2008) Bone repair in rat mandible by rhBMP-2 associated with two carriers. Micron 39(4):373–379.  https://doi.org/10.1016/j.micron.2007.03.008 CrossRefPubMedGoogle Scholar
  41. Jang MK, Jeong YI, Cho CS, Yang SH, Kang YE, Nah JW (2002) The preparation and characterization of low molecular and water soluble free-amine chitosan. Bull Kor Chem Soc 23(6):914–916CrossRefGoogle Scholar
  42. Jang J, Bae J, Park E (2006) Polyacrylonitrile nanofibers: formation mechanism and applications as a photoluminescent material and carbon-nanofiber precursor. Adv Funct Mater 16(11):1400–1406.  https://doi.org/10.1002/adfm.200500598 CrossRefGoogle Scholar
  43. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337.  https://doi.org/10.1016/j.biotechadv.2011.01.005 CrossRefPubMedGoogle Scholar
  44. Jayde V, Boughton M (2016) ‘Living the tightrope’: the experience of maternal ovarian cancer for adult children in Australia. Eur J Oncol Nurs 20:184–190.  https://doi.org/10.1016/j.ejon.2015.08.004 CrossRefPubMedGoogle Scholar
  45. Je JY, Kim SK (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54(18):6629–6633.  https://doi.org/10.1021/jf061310p CrossRefPubMedGoogle Scholar
  46. Jeon SJ, Oh M, Yeo WS, Galvao KN, Jeong KC (2014) Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS One 9(3):e92723.  https://doi.org/10.1371/journal.pone.0092723 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jeon SJ, Ma Z, Kang M, Galvão KN, Jeong KC (2016) Application of chitosan microparticles for treatment of metritis and in vivo evaluation of broad spectrum antimicrobial activity in cow uteri. Biomater 110:71–80.  https://doi.org/10.1016/j.biomaterials.2016.09.016 CrossRefGoogle Scholar
  48. Jeuken R, Roth A, Peters R, van Donkelaar C, Thies J, van Rhijn L, Emans P (2016) Polymers in cartilage defect repair of the knee: current status and future prospects. Polym 8(6):219CrossRefGoogle Scholar
  49. Kanauchi O, Deuchi K, Imasato Y, Shizukuishi M, Kobayashi E (1995) Mechanism for the inhibition of fat digestion by chitosan and for the synergistic effect of ascorbate. Biosci Biotechnol Biochem 59(5):786–790.  https://doi.org/10.1080/bbb.59.786 CrossRefPubMedGoogle Scholar
  50. Karagozlu MZ, Kim J-A, Karadeniz F, Kong C-S, Kim S-K (2010) Anti-proliferative effect of aminoderivatized chitooligosaccharides on AGS human gastric cancer cells. Process Biochem 45(9):1523–1528.  https://doi.org/10.1016/j.procbio.2010.05.035 CrossRefGoogle Scholar
  51. Karagozlu MZ, Karadeniz F, Kong C-S, Kim S-K (2012) Aminoethylated chitooligomers and their apoptotic activity on AGS human cancer cells. Carbohydr Polym 87(2):1383–1389.  https://doi.org/10.1016/j.carbpol.2011.09.034 CrossRefGoogle Scholar
  52. Kavya KC, Jayakumar R, Nair S, Chennazhi KP (2013) Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 59:255–263.  https://doi.org/10.1016/j.ijbiomac.2013.04.023 CrossRefPubMedGoogle Scholar
  53. Kawada M, Hachiya Y, Arihiro A, Mizoguchi E (2007) Role of mammalian chitinases in inflammatory conditions. Keio J Med 56(1):21–27CrossRefGoogle Scholar
  54. Kiang T, Wen J, Lim HW, Leong KW (2004) The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomater 25(22):5293–5301.  https://doi.org/10.1016/j.biomaterials.2003.12.036 CrossRefGoogle Scholar
  55. Klimek L (2008) Early detection of allergic diseases. Laryngo-Rhino-Otologie 87(Suppl 1):S32–S53.  https://doi.org/10.1055/s-2007-995537 CrossRefPubMedGoogle Scholar
  56. Kong M, Chen XG, Liu CS, Liu CG, Meng XH, Yu le J (2008) Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids Surf B: Biointerfaces 65(2):197–202.  https://doi.org/10.1016/j.colsurfb.2008.04.003 CrossRefPubMedGoogle Scholar
  57. Köping-Höggård M, Mel’nikova YS, Vårum KM, Lindman B, Artursson P (2003) Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J Gene Med 5(2):130–141.  https://doi.org/10.1002/jgm.327 CrossRefPubMedGoogle Scholar
  58. Köping-Höggård M, Vårum KM, Issa M, Danielsen S, Christensen BE, Stokke BT, Artursson P (2004) Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther 11(19):1441–1452.  https://doi.org/10.1038/sj.gt.3302312 CrossRefPubMedGoogle Scholar
  59. Kotlyar DS, Shum M, Hsieh J, Blonski W, Greenwald DA (2014) Non-pulmonary allergic diseases and inflammatory bowel disease: a qualitative review. World J Gastroenterol 20(32):11023–11032.  https://doi.org/10.3748/wjg.v20.i32.11023 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084.  https://doi.org/10.1021/cr030441b CrossRefPubMedGoogle Scholar
  61. Lai RF, Li ZJ, Zhou ZY, Feng ZQ, Zhao QT (2013) Effect of rhBMP–2 sustained–release nanocapsules on the ectopic osteogenesis process in sprague–dawley rats. Asian Pac J Trop Med 6(11):884–888.  https://doi.org/10.1016/S1995-7645(13)60157-1 CrossRefPubMedGoogle Scholar
  62. Lavertu M, Méthot S, Tran-Khanh N, Buschmann MD (2006) High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomater 27(27):4815–4824.  https://doi.org/10.1016/j.biomaterials.2006.04.029 CrossRefGoogle Scholar
  63. Levitz SM, Huang H, Ostroff GR, Specht CA (2015) Exploiting fungal cell wall components in vaccines. Semin Immunopathol 37(2):199–207.  https://doi.org/10.1007/s00281-014-0460-6 CrossRefPubMedGoogle Scholar
  64. Li KG, Chen JT, Bai SS, Wen X, Song SY, Yu Q, Li J, Wang YQ (2009) Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicol in Vitro 23(6):1007–1013.  https://doi.org/10.1016/j.tiv.2009.06.020 CrossRefPubMedGoogle Scholar
  65. Li X, Wang H, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N (2011) Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun 47(3):932–934.  https://doi.org/10.1039/c0cc03552a CrossRefGoogle Scholar
  66. Li X, Min M, Du N, Gu Y, Hode T, Naylor M, Chen D, Nordquist RE, Chen WR (2013) Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013:387023.  https://doi.org/10.1155/2013/387023 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Li J, Wu Y, Zhao L (2016) Antibacterial activity and mechanism of chitosan with ultra high molecular weight. Carbohydr Polym 148:200–205.  https://doi.org/10.1016/j.carbpol.2016.04.025 CrossRefPubMedGoogle Scholar
  68. Li J, Zhao L, Wu Y, Rajoka MSR (2019a) Insights on the ultra high antibacterial activity of positionally substituted 2′-O-hydroxypropyl trimethyl ammonium chloride chitosan: a joint interaction of -NH2 and -N+(CH3)3 with bacterial cell wall. Colloids Surf B: Biointerfaces 173:429–436.  https://doi.org/10.1016/j.colsurfb.2018.09.077 CrossRefPubMedGoogle Scholar
  69. Li J, Zhao L, Wu Y, Rajoka MSR (2019b) Insights on the ultra high antibacterial activity of positionally substituted 2′-O-hydroxypropyl trimethyl ammonium chloride chitosan: a joint interaction of -NH2 and -N+(CH3)3 with bacterial cell wall. Colloids Surf B: Biointerfaces 173:429–436.  https://doi.org/10.1016/j.colsurfb.2018.09.077 CrossRefPubMedGoogle Scholar
  70. Lin SY, Lin FS, Chen MK, Tsai LR, Jao YC, Lin HY, Wang CL, Hwu YK, Yang CS (2010) One-pot synthesis of linear-like and photoluminescent polyethylenimines for intracellular imaging and siRNA delivery. Chem Commun 46(30):5554–5556.  https://doi.org/10.1039/c002775h CrossRefGoogle Scholar
  71. Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4.  https://doi.org/10.1016/j.freeradbiomed.2013.02.011 CrossRefPubMedGoogle Scholar
  72. López-Lacomba JL, García-Cantalejo JM, Sanz Casado JV, Abarrategi A, Correas Magaña V, Ramos V (2006) Use of rhBPM-2 activated chitosan films to improve osseointegration. Biomacromol 7(3):792–798.  https://doi.org/10.1021/bm050859e CrossRefGoogle Scholar
  73. Lu B, Wang T, Li Z, Dai F, Lv L, Tang F, Yu K, Liu J, Lan G (2016) Healing of skin wounds with a chitosan–gelatin sponge loaded with tannins and platelet-rich plasma. Int J Biol Macromol 82:884–891.  https://doi.org/10.1016/j.ijbiomac.2015.11.009 CrossRefPubMedGoogle Scholar
  74. Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, Chen R (2017) Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym 156:460–469.  https://doi.org/10.1016/j.carbpol.2016.09.051 CrossRefPubMedGoogle Scholar
  75. Mahmoud AA, Salama AH (2016) Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: preparation, evaluation and in-vivo wound healing assessment. Eur J Pharm Sci 83:155–165.  https://doi.org/10.1016/j.ejps.2015.12.026 CrossRefPubMedGoogle Scholar
  76. Martin GL, Ross JA, Minteer SD, Jameson DM, Cooney MJ (2009) Fluorescence characterization of chemical microenvironments in hydrophobically modified chitosan. Carbohydr Polym 77(4):695–702.  https://doi.org/10.1016/j.carbpol.2009.02.021 CrossRefGoogle Scholar
  77. Maurstad G, Stokke BT, Varum KM, Strand SP (2013) PEGylated chitosan complexes DNA while improving polyplex colloidal stability and gene transfection efficiency. Carbohydr Polym 94(1):436–443.  https://doi.org/10.1016/j.carbpol.2013.01.015 CrossRefPubMedGoogle Scholar
  78. Meimandi-Parizi A, Oryan A, Moshiri A (2013) Tendon tissue engineering and its role on healing of the experimentally induced large tendon defect model in rabbits: a comprehensive in vivo study. PLoS One 8(9):e73016.  https://doi.org/10.1371/journal.pone.0073016 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Mohamed S (2014) Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci Technol 35(2):114–128.  https://doi.org/10.1016/j.tifs.2013.11.001 CrossRefGoogle Scholar
  80. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76(2):167–182.  https://doi.org/10.1016/j.carbpol.2008.11.002 CrossRefGoogle Scholar
  81. Muzzarelli RAA, Orlandini F, Pacetti D, Boselli E, Frega NG, Tosi G, Muzzarelli C (2006) Chitosan taurocholate capacity to bind lipids and to undergo enzymatic hydrolysis: an in vitro model. Carbohydr Polym 66(3):363–371.  https://doi.org/10.1016/j.carbpol.2006.03.021 CrossRefGoogle Scholar
  82. Muzzarelli RAA, Morganti P, Morganti G, Palombo P, Palombo M, Biagini G, Mattioli Belmonte M, Giantomassi F, Orlandi F, Muzzarelli C (2007) Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr Polym 70(3):274–284.  https://doi.org/10.1016/j.carbpol.2007.04.008 CrossRefGoogle Scholar
  83. Nadalin S, Bockhorn M, Malagó M, Valentin-Gamazo C, Frilling A, Broelsch CE (2006) Living donor liver transplantation. HPB 8(1):10–21.  https://doi.org/10.1080/13651820500465626 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Nandi SK, Kundu B, Basu D (2013) Protein growth factors loaded highly porous chitosan scaffold: a comparison of bone healing properties. Mater Sci Eng C Mater Biol Appl 33(3):1267–1275.  https://doi.org/10.1016/j.msec.2012.12.025 CrossRefPubMedGoogle Scholar
  85. Ngo DH, Kim SK (2014) Antioxidant effects of chitin, chitosan, and their derivatives. Adv Food Nutr Res 73:15–31.  https://doi.org/10.1016/b978-0-12-800,268-1.00002-0 CrossRefPubMedGoogle Scholar
  86. Ngo D-N, Kim M-M, Kim S-K (2008a) Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr Polym 74(2):228–234.  https://doi.org/10.1016/j.carbpol.2008.02.005 CrossRefGoogle Scholar
  87. Ngo D-N, Qian Z-J, Je J-Y, Kim M-M, Kim S-K (2008b) Aminoethyl chitooligosaccharides inhibit the activity of angiotensin converting enzyme. Process Biochem 43(1):119–123.  https://doi.org/10.1016/j.procbio.2007.10.018 CrossRefGoogle Scholar
  88. Ngo D-N, Lee S-H, Kim M-M, Kim S-K (2009) Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J Funct Foods 1(2):188–198.  https://doi.org/10.1016/j.jff.2009.01.008 CrossRefGoogle Scholar
  89. Nguyen TH, Kwak HS, Kim SM (2013) Physicochemical and biofunctional properties of crab chitosan nanoparticles. J Nanosci Nanotechnol 13(8):5296–5304CrossRefGoogle Scholar
  90. Nimesh S, Thibault MM, Lavertu M, Buschmann MD (2010) Enhanced gene delivery mediated by low molecular weight chitosan/DNA complexes: effect of pH and serum. Mol Biotechnol 46(2):182–196.  https://doi.org/10.1007/s12033-010-9286-1 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Niu L, Y-c X, H-y X, Dai Z, Tang H-Q (2008) Expression of human insulin gene wrapped with chitosan nanoparticles in NIH3T3 cells and diabetic rats. Acta Pharmacol Sin 29:1342.  https://doi.org/10.1111/j.1745-7254.2008.00888.x CrossRefPubMedGoogle Scholar
  92. No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol (1–2):74, 65–72Google Scholar
  93. Ogawa S, Decker EA, McClements DJ (2003) Influence of environmental conditions on the stability of oil in water emulsions containing droplets stabilized by lecithin-chitosan membranes. J Agric Food Chem 51(18):5522–5527.  https://doi.org/10.1021/jf026103d CrossRefPubMedGoogle Scholar
  94. Oh S-H, Vo T-S, Ngo D-H, Kim S-Y, Ngo D-N, Kim S-K (2016) Prevention of H2O2-induced oxidative stress in murine microglial BV-2 cells by chitin-oligomers. Process Biochem 51(12):2170–2175.  https://doi.org/10.1016/j.procbio.2016.08.015 CrossRefGoogle Scholar
  95. Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9(1):18.  https://doi.org/10.1186/1749-799x-9-18 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Pan H, Fu C, Huang L, Jiang Y (2018) Anti-obesity effect of chitosan oligosaccharide capsules (COSCs) in obese rats by ameliorating leptin resistance and adipogenesis. Mar Drugs 16(6).  https://doi.org/10.3390/md16060198
  97. Paramasivan S, Jones D, Baker L, Hanton L, Robinson S, Wormald PJ, Tan L (2014) The use of chitosan-dextran gel shows anti-inflammatory, antibiofilm, and antiproliferative properties in fibroblast cell culture. Am J Rhinol Allergy 28(5):361–365.  https://doi.org/10.2500/ajra.2014.28.4069 CrossRefPubMedGoogle Scholar
  98. Park P-J, Je J-Y, Kim S-K (2003) Angiotensin I converting enzyme (ACE) inhibitory activity of hetero-chitooligosaccharides prepared from partially different deacetylated chitosans. J Agric Food Chem 51(17):4930–4934.  https://doi.org/10.1021/jf0340557 CrossRefPubMedGoogle Scholar
  99. Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, Chung CP (2006) Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnol Appl Biochem 43(1):17–24.  https://doi.org/10.1042/BA20050075 CrossRefPubMedGoogle Scholar
  100. Paul W, Sharma CP (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18(1):18–23Google Scholar
  101. Perinelli DR, Fagioli L, Campana R, Lam JKW, Baffone W, Palmieri GF, Casettari L, Bonacucina G (2018) Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci 117:8–20.  https://doi.org/10.1016/j.ejps.2018.01.046 CrossRefPubMedGoogle Scholar
  102. Qi X-N, Mou Z-L, Zhang J, Zhang Z-Q (2014) Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds. J Biomed Mater Res A 102(2):366–372.  https://doi.org/10.1002/jbm.a.34710 CrossRefPubMedGoogle Scholar
  103. Qian ZJ, Eom TK, Ryu BM, Kim SK (2010) Angiotensin I-converting enzyme inhibitory activity of sulfated chitooligosaccharides with different molecular weights. J Chitin Chitosan 15:75–79Google Scholar
  104. Qin Y, Xing R, Liu S, Li K, Hu L, Yu H, Chen X, Li P (2014) Synthesis of chitosan derivative with diethyldithiocarbamate and its antifungal activity. Int J Biol Macromol 65:369–374.  https://doi.org/10.1016/j.ijbiomac.2014.01.072 CrossRefPubMedGoogle Scholar
  105. Raafat D, von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74(12):3764–3773.  https://doi.org/10.1128/aem.00453-08 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Rahmi L, Julinawati S (2017) Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions. Carbohydr Polym 170:226–233.  https://doi.org/10.1016/j.carbpol.2017.04.084 CrossRefPubMedGoogle Scholar
  107. Rai AK, Sanjukta S, Jeyaram K (2017) Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Crit Rev Food Sci Nutr 57(13):2789–2800.  https://doi.org/10.1080/10408398.2015.1068736 CrossRefPubMedGoogle Scholar
  108. Ramjiawan RR, Griffioen AW, Duda DG (2017) Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? Angiogenesis 20(2):185–204.  https://doi.org/10.1007/s10456-017-9552-y CrossRefPubMedPubMedCentralGoogle Scholar
  109. Ravi H, Kurrey N, Manabe Y, Sugawara T, Baskaran V (2018) Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). Mater Sci Eng C Mater Biol Appl 91:785–795.  https://doi.org/10.1016/j.msec.2018.06.018 CrossRefPubMedGoogle Scholar
  110. Restani RB, Conde J, Baptista PV, Cidade MT, Bragança AM, Morgado J, Correia IJ, Aguiar-Ricardo A, Bonifácio VDB (2014) Polyurea dendrimer for efficient cytosolic siRNA delivery. RSC Adv 4(97):54872–54878.  https://doi.org/10.1039/c4ra09603g CrossRefGoogle Scholar
  111. Riaz Rajoka MS, Jin M, Haobin Z, Li Q, Shao D, Jiang C, Huang Q, Yang H, Shi J, Hussain N (2018) Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk. LWT Food Sci Technol 89:638–647.  https://doi.org/10.1016/j.lwt.2017.11.034 CrossRefGoogle Scholar
  112. Ruijin Y, Hongsheng L, Yizeng X, Deyu Y, Zaiquan S, Chunling Y (2016) Water soluble chitosan enhances bone fracture healing in rabbit model. Curr Signal Transduct Ther 11(1):28–32.  https://doi.org/10.2174/1574362411666151231213944 CrossRefGoogle Scholar
  113. Sabaa MW, Elzanaty AM, Abdel-Gawad OF, Arafa EG (2018) Synthesis, characterization and antimicrobial activity of Schiff bases modified chitosan-graft-poly(acrylonitrile). Int J Biol Macromol 109:1280–1291.  https://doi.org/10.1016/j.ijbiomac.2017.11.129 CrossRefPubMedGoogle Scholar
  114. Saravanan S, Leena RS, Selvamurugan N (2016) Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1354–1365.  https://doi.org/10.1016/j.ijbiomac.2016.01.112 CrossRefPubMedGoogle Scholar
  115. Shahzad S, Yar M, Siddiqi SA, Mahmood N, Rauf A, Qureshi ZU, Anwar MS, Afzaal S (2015) Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: novel anti-bacterial wound dressing matrices. J Mater Sci Mater Med 26(3):136.  https://doi.org/10.1007/s10856-015-5462-y CrossRefPubMedGoogle Scholar
  116. Shen K-T, Chen M-H, Chan H-Y, Jeng J-H, Wang Y-J (2009) Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol 47(8):1864–1871.  https://doi.org/10.1016/j.fct.2009.04.044 CrossRefPubMedGoogle Scholar
  117. Shen Y, Ma X, Zhang B, Zhou Z, Sun Q, Jin E, Sui M, Tang J, Wang J, Fan M (2011) Degradable dual pH- and temperature-responsive photoluminescent dendrimers. Chemistry 17(19):5319–5326.  https://doi.org/10.1002/chem.201003495 CrossRefPubMedGoogle Scholar
  118. Sivashankari PR, Prabaharan M (2016) Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. Int J Biol Macromol 93:1382–1389.  https://doi.org/10.1016/j.ijbiomac.2016.02.043 CrossRefPubMedGoogle Scholar
  119. Strand SP, Lelu S, Reitan NK, de Lange Davies C, Artursson P, Vårum KM (2010) Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomater 31(5):975–987.  https://doi.org/10.1016/j.biomaterials.2009.09.102 CrossRefGoogle Scholar
  120. Thevarajah JJ, Van Leeuwen MP, Cottet H, Castignolles P, Gaborieau M (2017) Determination of the distributions of degrees of acetylation of chitosan. Int J Biol Macromol 95:40–48.  https://doi.org/10.1016/j.ijbiomac.2016.10.056 CrossRefPubMedGoogle Scholar
  121. Ti D, Hao H, Xia L, Tong C, Liu J, Dong L, Xu S, Zhao Y, Liu H, Fu X, Han W (2015) Controlled release of thymosin beta 4 using a collagen-chitosan sponge scaffold augments cutaneous wound healing and increases angiogenesis in diabetic rats with hindlimb ischemia. Tissue Eng Part A 21(3–4):541–549.  https://doi.org/10.1089/ten.TEA.2013.0750 CrossRefPubMedGoogle Scholar
  122. Um SH, Kim HJ, Kim D, Kwon JE, Lee JW, Hwang D, Kim SK, Park SY (2018) Highly fluorescent and water soluble turn-on type diarylethene for super-resolution bioimaging over a broad pH range. Dyes Pigments 158:36–41.  https://doi.org/10.1016/j.dyepig.2018.05.014 CrossRefGoogle Scholar
  123. Upadhyaya L, Singh J, Agarwal V, Tewari RP (2014) The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Control Release 186:54–87.  https://doi.org/10.1016/j.jconrel.2014.04.043 CrossRefPubMedGoogle Scholar
  124. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84.  https://doi.org/10.1016/j.biocel.2006.07.001 CrossRefPubMedGoogle Scholar
  125. Van De Manakker F, Vermonden T, Van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromol 10(12):3157–3175.  https://doi.org/10.1021/bm901065f CrossRefGoogle Scholar
  126. Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering - an overview. Mar Drugs 8(8):2252–2266.  https://doi.org/10.3390/md8082252 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Venkatrajah B, Malathy VV, Elayarajah B, Rajendran R, Rammohan R (2013) Synthesis of carboxymethyl chitosan and coating on wound dressing gauze for wound healing. Pak J Biol Sci 16(22):1438–1448CrossRefGoogle Scholar
  128. Vo T-S, Kong C-S, Kim S-K (2011) Inhibitory effects of chitooligosaccharides on degranulation and cytokine generation in rat basophilic leukemia RBL-2H3 cells. Carbohydr Polym 84(1):649–655.  https://doi.org/10.1016/j.carbpol.2010.12.046 CrossRefGoogle Scholar
  129. Vo T-S, Kim J-A, Ngo D-H, Kong C-S, Kim S-K (2012a) Protective effect of chitosan oligosaccharides against FcɛRI-mediated RBL-2H3 mast cell activation. Process Biochem 47(2):327–330.  https://doi.org/10.1016/j.procbio.2011.10.036 CrossRefGoogle Scholar
  130. Vo T-S, Ngo D-H, Kim S-K (2012b) Gallic acid-grafted chitooligosaccharides suppress antigen-induced allergic reactions in RBL-2H3 mast cells. Eur J Pharm Sci 47(2):527–533.  https://doi.org/10.1016/j.ejps.2012.07.010 CrossRefPubMedGoogle Scholar
  131. Wang T, Zhu X-K, Xue X-T, Wu D-Y (2012) Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 88(1):75–83.  https://doi.org/10.1016/j.carbpol.2011.11.069 CrossRefGoogle Scholar
  132. Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD (2015) Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 35(Suppl):S224–s243.  https://doi.org/10.1016/j.semcancer.2015.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Wei Z, Sun L, Liu J, Zhang JZ, Yang H, Yang Y, Shi L (2014) Cysteine modified rare-earth up-converting nanoparticles for invitro and invivo bioimaging. Biomater 35(1):387–392.  https://doi.org/10.1016/j.biomaterials.2013.09.110 CrossRefGoogle Scholar
  134. Wu H, Yao Z, Bai X, Du Y, Lin B (2008) Anti-angiogenic activities of chitooligosaccharides. Carbohydr Polym 73(1):105–110.  https://doi.org/10.1016/j.carbpol.2007.11.011 CrossRefGoogle Scholar
  135. Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25(2):170–179.  https://doi.org/10.1016/j.foodhyd.2010.03.003 CrossRefGoogle Scholar
  136. Xu H-B, Huang Z-Q (2007) Icariin enhances endothelial nitric-oxide synthase expression on human endothelial cells in vitro. Vasc Pharmacol 47(1):18–24.  https://doi.org/10.1016/j.vph.2007.03.002 CrossRefGoogle Scholar
  137. Yang W, Pan CY, Liu XQ, Wang J (2011) Multiple functional hyperbranched poly(amido amine) nanoparticles: synthesis and application in cell imaging. Biomacromol 12(5):1523–1531.  https://doi.org/10.1021/bm1014816 CrossRefGoogle Scholar
  138. Yang I, Lee JW, Hwang S, Lee JE, Lim E, Lee J, Hwang D, Kim CH, Keum Y-S, Kim SK (2017) Live bio-imaging with fully bio-compatible organic fluorophores. J Photochem Photobiol B 166:52–57.  https://doi.org/10.1016/j.jphotobiol.2016.11.009 CrossRefPubMedGoogle Scholar
  139. Yildirim-Aksoy M, Beck BH (2017) Antimicrobial activity of chitosan and a chitosan oligomer against bacterial pathogens of warmwater fish. J Appl Microbiol 122(6):1570–1578.  https://doi.org/10.1111/jam.13460 CrossRefPubMedGoogle Scholar
  140. Yong KT, Roy I, Swihart MT, Prasad PN (2009) Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J Mater Chem 19(27):4655–4672.  https://doi.org/10.1039/b817667c CrossRefPubMedPubMedCentralGoogle Scholar
  141. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174.  https://doi.org/10.3390/md13031133 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Yu K, Wu S, Li H (2016) A chitosan-graft-PEI-eprosartan conjugate for cardiomyocyte-targeted VEGF plasmid delivery in myocardial ischemia gene therapy. J Exp Nanosci 11(2):81–96.  https://doi.org/10.1080/17458080.2015.1029015 CrossRefGoogle Scholar
  143. Yuan Y, Tan J, Wang Y, Qian C, Zhang M (2009) Chitosan nanoparticles as non-viral gene delivery vehicles based on atomic force microscopy study. Acta Biochim Biophys Sin 41(6):515–526.  https://doi.org/10.1093/abbs/gmp038 CrossRefPubMedGoogle Scholar
  144. Zhang J, Zhang W, Mamadouba B, Xia W (2012) A comparative study on hypolipidemic activities of high and low molecular weight chitosan in rats. Int J Biol Macromol 51(4):504–508.  https://doi.org/10.1016/j.ijbiomac.2012.06.018 CrossRefPubMedGoogle Scholar
  145. Zhao X, Yu S-B, Wu F-L, Mao Z-B, Yu C-L (2006) Transfection of primary chondrocytes using chitosan-pEGFP nanoparticles. J Control Release 112(2):223–228.  https://doi.org/10.1016/j.jconrel.2006.01.016 CrossRefPubMedGoogle Scholar
  146. Zhao L, Wu Y, Chen S, Xing T (2015a) Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications. Carbohydr Polym 126:150–155.  https://doi.org/10.1016/j.carbpol.2015.02.050 CrossRefPubMedGoogle Scholar
  147. Zhao XN, Liang JL, Chen HB, Liang YE, Guo HZ, Su ZR, Li YC, Zeng HF, Zhang XJ (2015b) Anti-fatigue and antioxidant activity of the polysaccharides isolated from millettiae speciosae champ. Leguminosae. Nutrients 7(10):8657–69 doi: https://doi.org/10.3390/nu7105422
  148. Zhou K, Xia W, Zhang C, Yu L (2006) In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties. LWT Food Sci Technol 39(10):1087–1092.  https://doi.org/10.1016/j.lwt.2005.07.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Muhammad Shahid Riaz Rajoka
    • 1
    • 2
  • Liqing Zhao
    • 1
    Email author
  • Hafiza Mahreen Mehwish
    • 3
  • Yiguang Wu
    • 1
    Email author
  • Shahid Mahmood
    • 4
  1. 1.Department of Food Science and Engineering, College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  2. 2.Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  3. 3.Department of Pharmacy, School of Medicine, Key Laboratory of Novel Health Care Product; Engineering Laboratory of Shenzhen Natural Small Molecules Innovative DrugsShenzhen UniversityShenzhenPeople’s Republic of China
  4. 4.College of Management ScienceShenzhenPeople’s Republic of China

Personalised recommendations