Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 3, pp 1379–1391 | Cite as

Mitochondrial genome of the entomophthoroid fungus Conidiobolus heterosporus provides insights into evolution of basal fungi

  • Yong Nie
  • Lin Wang
  • Yue Cai
  • Wei Tao
  • Yong-Jie ZhangEmail author
  • Bo HuangEmail author
Genomics, transcriptomics, proteomics

Abstract

Entomophthoroid fungi represent an ecologically important group of fungal pathogens on insects. Here, the whole mitogenome of Conidiobolus heterosporus, one of the entomophthoroid fungi, was described and compared to those early branching fungi with available mitogenomes. The 53,364-bp circular mitogenome of C. heterosporus contained two rRNA genes, 14 standard protein-coding genes, 26 tRNA genes, and three free-standing ORFs. Thirty introns interrupted nine mitochondrial genes. Phylogenetic analysis based on mitochondrion-encoded proteins revealed that C. heterosporus was most close to Zancudomyces culisetae in the Zoopagomycota of basal fungi. Comparison on mitogenomes of 23 basal fungi revealed great variabilities in terms of mitogenome conformation (circular or linear), genetic code (codes 1, 4, or 16), AT contents (53.385.5%), etc. These mitogenomes varied from 12.0 to 97.3 kb in sizes, mainly due to different numbers of genes and introns. They showed frequent DNA rearrangement events and a high variability of gene order, although high synteny and conserved gene order were also present between closely related species. By reporting the first mitogenome in Entomophthoromycotina and the second in Zoopagomycota, this study greatly enhanced our understanding on evolution of basal fungi.

Keywords

Conidiobolus heterosporus Mitochondrial genome Basal fungi Phylogeny Evolution 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31272096, 31471821, 31572060, and 31872162), the Natural Science Foundation of Shanxi Province (201601D011065), and the Research Project Supported by Shanxi Scholarship Council of China (2017-015).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9549_MOESM1_ESM.xlsx (24 kb)
ESM 1 (XLSX 24 kb)

References

  1. Alnakeeb K, Petersen TN, Sicheritzpontén T (2017) Norgal: extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data. BMC Bioinf 18(1):510–517.  https://doi.org/10.1186/s12859-017-1927-y CrossRefGoogle Scholar
  2. Batko A (1964) Notes on entomophthoraceous fungi in Poland. Entomophaga. Men Hors Ser 2:129–131Google Scholar
  3. Ben-Ze’ev I, Kenneth RG (1982a) Features-criteria of taxonomic value in the Entomophthorales: I. A revision of the Batkoan classification. Mycotaxon 14:393–455Google Scholar
  4. Ben-Ze’ev I, Kenneth RG (1982b) Features-criteria of taxonomic value in the Entomophthorales: II. A revision of the genus Erynia Nowakowski 1881 (=Zoophthora Batko 1964). Mycotaxon 14:456–475Google Scholar
  5. Brefeld O (1871) Untersunchngen über die Entwicklung der Empusa muscae und Empusa radicans etc. Abh naturf Ges Halle 12:1–50Google Scholar
  6. Bullerwell CE, Forget L, Lang BF (2003) Evolution of monoblepharidalean fungi based on complete mitochondrial genome sequences. Nucleic Acids Res 31(6):1614–1623.  https://doi.org/10.1093/nar/gkg264 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5(6):e11147.  https://doi.org/10.1371/journal.pone.0011147 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Drechsler C (1953) Two new species of Conidiobolus occurring in leaf mold. Am J Bot 40(3):104–115.  https://doi.org/10.1002/j.1537-2197.1953.tb06458.x CrossRefGoogle Scholar
  9. Forget L, Ustinova J, Wang Z, Huss VA, Lang BF (2002) Hyaloraphidium curvatum: a linear mitochondrial genome, tRNA editing, and an evolutionary link to lower fungi. Mol Biol Evol 19(3):310–319.  https://doi.org/10.1093/oxfordjournals.molbev.a004084 CrossRefPubMedGoogle Scholar
  10. Fresenius G (1858) Ueber die Pilzgattung Entomophthora. Abh Senckenberg Naturf Ges 2:201–210Google Scholar
  11. Gryganskyi AP, Humber RA, Smith ME, Miadlikovska J, Wu S, Voigt K, Walther G, Anishchenko IM, Vilgalys R (2012) Molecular phylogeny of the Entomophthoromycota. Mol Phylogenet Evol 65(2):682–694.  https://doi.org/10.1016/j.ympev.2012.11.001 CrossRefPubMedGoogle Scholar
  12. Gryganskyi AP, Humber RA, Smith ME, Hodge K, Huang B, Voigt K, Vilgalys R (2013) Phylogenetic lineages in Entomophthoromycota. Persoonia 30:94–105.  https://doi.org/10.3767/003158513X666330 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hibbett DS, Binder M, Bischo JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Grith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547.  https://doi.org/10.1016/j.mycres.2007.03.004 CrossRefPubMedGoogle Scholar
  14. Huang B, Humber RA, Hodge KT (2007) A new species of Conidiobolus from Great Smoky Mountains National Park. Mycotaxon 100:227–233Google Scholar
  15. Humber RA (1981) An alternative view of certain taxonomic criteria used in the Entomophthorales (Zygomycetes). Mycotaxon 13:191–240Google Scholar
  16. Humber RA (1989) Synopsis of a revised classification for the Entomophthorales (Zygomycotina). Mycotaxon 36:441–460Google Scholar
  17. Humber RA (2012) Entomophthoromycota: a new phylum and reclassification for entomophthoroid fungi. Mycotaxon 120:477–492.  https://doi.org/10.5248/120.477 CrossRefGoogle Scholar
  18. James TY, Kau F, Schoch C, Matheny PB, Hofstetter V, Cox CJ, Celio G, Geuidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MW, Grith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman A, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R ((2006a)) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822.  https://doi.org/10.1038/nature05110
  19. James TY, Letcher PM, Longcore JE, Mozley-Strandridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R (2006b) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871.  https://doi.org/10.3852/mycologia.98.6.860 CrossRefPubMedGoogle Scholar
  20. James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite the Cryptomycota and Microsporidia. Curr Biol 23(16):1548–1553.  https://doi.org/10.1016/j.cub.2013.06.057 CrossRefPubMedGoogle Scholar
  21. Jones MDM, Richards TA, Hawksworth DL, David B (2011) Validation and justification of the phylum name Cryptomycota phyl. nov. IMA Fungus 2(2):173–175.  https://doi.org/10.5598/imafungus.2011.02.02.08 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Keller S (1987) Arthropod-pathogenic Entomophthorales of Switzerland. I. Conidiobolus, Entomophaga and Entomophthora. Sydowia 40:122–167Google Scholar
  24. Keller S (1991) Arthropod-pathogenic Entomophthorales of Switzerland. II. Erynia, Eryniopsis, Neozygites, Zoophthora and Tarichium. Sydowia 43:39–122Google Scholar
  25. Keller S (2008) The arthropod-pathogenic Entomophthorales from Switzerland – is central Europe the centre of their global species-richness? Mitt Schweiz Entomol Ges 81:39–51Google Scholar
  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lee J, Young JPW (2009) The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol 183(1):200–211.  https://doi.org/10.1111/j.1469-8137.2009.02834.x CrossRefPubMedGoogle Scholar
  28. Mendoza L, Vilela R, Voelz K, Ibrahim AS, Voigt K, Lee SC (2014) Human fungal pathogens of Mucorales and Entomophthorales. Cold Spring Harb Perspect Med 5(4):1–33.  https://doi.org/10.1101/cshperspect.a019562 CrossRefGoogle Scholar
  29. Nadimi M, Beaudet D, Forget L, Hijri M, Lang BF (2012) Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi in Mortierellales. Mol Biol Evol 29:2199–2012.  https://doi.org/10.1093/molbev/mss088 CrossRefPubMedGoogle Scholar
  30. Nie Y, Yu CZ, Liu XY, Huang B (2012) A new species of Conidiobolus (Ancylistaceae) from Anhui, China. Mycotaxon 120:427–435  https://doi.org/10.5248/120.427
  31. Nie Y, Tang XX, Liu XY, Huang B (2016) Conidiobolus stilbeus, a new species with mycelial strand and two types of primary conidiophores. Mycosphere 7(6):801–809.  https://doi.org/10.5943/mycosphere/7/6/11 CrossRefGoogle Scholar
  32. Nie Y, Tang XX, Liu XY, Huang B (2017) A new species of Conidiobolus with chlamdosporus from Dabie Mountains, eastern China. Mycosphere 8(7):809–816.  https://doi.org/10.5943/mycosphere/8/7/1 CrossRefGoogle Scholar
  33. Nie Y, Qin L, Yu DS, Liu XY, Huang B (2018) Two new species of Conidiobolus occurring in Anhui, China. Mycol Prog 17(10):1203–1211.  https://doi.org/10.1007/s11557-018-1436-z CrossRefGoogle Scholar
  34. Nowakowski L (1883) Entomophthoreae. Przycynek do znajomosci pasorzytnych pasorzytnych grzybkow sprawiajacych pomor. Owadow. Pamietn Wydz Akad Umiej w Krakow 8:153–183Google Scholar
  35. Pelin A, Pombert JF, Salvioli A, Bonen L, Bonfante P, Corradi N (2012) The mitochondrial genome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals two unsuspected trans-splicing events of group I introns. New Phytol 194:836–845.  https://doi.org/10.1111/j.1469-8137.2012.04072.x CrossRefPubMedGoogle Scholar
  36. Remaudière G, Keller S (1980) Revision systematique des generes d’Entomophthoraceae a potentialite entomopathogene. Mycotaxon 11:323–338Google Scholar
  37. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574  https://doi.org/10.1093/bioinformatics/btg180
  38. Sandor S, Zhang YJ, Xu JP (2018) Fungal mitochondrial genomes and genetic polymorphisms. Appl Microbiol Biotechnol 102:9433–9448CrossRefPubMedGoogle Scholar
  39. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046.  https://doi.org/10.3852/16-042 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313.  https://doi.org/10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Thaxter R (1888) The Entomophthoreae of the United States. Mem Boston Soc Nat Hist 4:133–201Google Scholar
  42. van de Sande WW (2012) Phylogenetic analysis of the complete mitochondrial genome of Madurella mycetomatis confirms its taxonomic position within the order Sordariales. PLoS One 7(6):e38654.  https://doi.org/10.1371/journal.pone.0038654 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Vilela R, Silva SMS, Correa FR, Dominguez E, Mendoza L (2010) Morphologic and phylogenetic characterization of Conidiobolus lamprauges recovered from infected sheep. J Clin Microbiol 48:427–432.  https://doi.org/10.1128/JCM.01589-09 CrossRefPubMedGoogle Scholar
  44. Voigt K, Kirk PM (2011) Recent developments in the taxonomic affiliation and phylogenetic positioning of fungi: impact in applied microbiology and environmental biotechnology. Appl Microbiol Biotechnol 90(1):41–57.  https://doi.org/10.1007/s00253-011-3143-4 CrossRefPubMedGoogle Scholar
  45. Wang L, Zhang S, Li JH, Zhang YJ (2018) Mitochondrial genome, comparative analysis and evolutionary insights into the entomopathogenic fungus Hirsutella thompsonii. Environ Microbiol 20(9):3393–3405.  https://doi.org/10.1111/1462-2920.14379 CrossRefPubMedGoogle Scholar
  46. Watanabe M, Lee K, Goto K, Kumagai S, Sugita-Konishi Y, Hara-Kudo Y (2010) Rapid and effective DNA extraction method with bead grinding for a large amount of fungal DNA. J Food Prot 73(6):1077–1084.  https://doi.org/10.4315/0362-028X-73.6.1077 CrossRefPubMedGoogle Scholar
  47. Zhang S, Wang XN, Zhang XL, Liu XZ, Zhang YJ (2017a) Complete mitochondrial genome of the endophytic fungus Pestalotiopsis fici: features and evolution. Appl Microbiol Biotechnol 101(4):1593–1604.  https://doi.org/10.1007/s00253-017-8112-0 CrossRefPubMedGoogle Scholar
  48. Zhang YJ, Yang XQ, Zhang S, Humber RA, Xu J (2017b) Genomic analyses reveal low mitochondrial and high nuclear diversity in the cyclosporin-producing fungus Tolypocladium inflatum. Appl Microbiol Biotechnol 101(23-24):8517–8531.  https://doi.org/10.1007/s00253-017-8574-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Anhui Provincial Key Laboratory of Microbial Pest ControlAnhui Agricultural UniversityHefeiChina
  2. 2.School of Civil Engineering and ArchitectureAnhui University of TechnologyMa’anshanChina
  3. 3.School of Life ScienceShanxi UniversityTaiyuanChina
  4. 4.Department of Biological and Environmental EngineeringHefei UniversityHefeiChina
  5. 5.School of Forestry and Landscape ArchitectureAnhui Agricultural UniversityHefeiChina

Personalised recommendations