Advertisement

Coordinated downregulation of the photosynthetic apparatus as a protective mechanism against UV exposure in the diatom Corethron hystrix

  • Robert W. Read
  • David C. Vuono
  • Iva Neveux
  • Carl Staub
  • Joseph J. GrzymskiEmail author
Genomics, transcriptomics, proteomics

Abstract

The effect of ultraviolet radiation (UVR) on photosynthetic efficiency and the resulting mechanisms against UV exposure employed by phytoplankton are not completely understood. To address this knowledge gap, we developed a novel close-coupled, wavelength-configurable platform designed to produce precise and repeatable in vitro irradiation of Corethron hystrix, a member of a genera found abundantly in the Southern Ocean where UV exposure is high. We aimed to determine its metabolic, protective, and repair mechanisms as a function of varying levels of specific electromagnetic energy. Our results show that the physiological responses to each energy level of UV have a negative linear decrease in the photosynthetic efficiency of photosystem II proportional to UV intensity, corresponding to a large increase in the turnover time of quinone reoxidation. Gene expression changes of photosystem II-related reaction center proteins D1, CP43, and CP47 showed coordinated downregulation whereas the central metabolic pathway demonstrated mixed expression of up and downregulated transcripts after UVR exposure. These results suggest that while UVR may damage photosynthetic machinery, oxidative damage may limit production of new photosynthetic and electron transport complexes as a result of UVR exposure.

Keywords

Diatom UVR Photosynthetic damage Transcriptome 

Notes

Acknowledgements

We would like to thank Dr. Zbigniew Kolber for his expertise and guidance during the manuscript preparation.

Compliance with ethical standards

Conflict of interest

Authors Robert Read, David Vuono, and Iva Neveux declare that they have no conflict of interest. Authors Joseph Grzymski and Carl Staub have a conflict of interest as they are co-founders of the company, EMS Genomics, that developed the light engine.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9544_MOESM1_ESM.pdf (717 kb)
ESM 1 (PDF 717 kb)

References

  1. Allen AE, Laroche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, Finazzi G, Fernie AR, Bowler C (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci U S A 105:10438–10443.  https://doi.org/10.1073/pnas.0711370105 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrews S (2009) FastQC A Quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  3. Armbrust EV (2009) The life of diatoms in the world's oceans. Nature 459:185–192CrossRefGoogle Scholar
  4. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86.  https://doi.org/10.1126/science.1101156 CrossRefPubMedGoogle Scholar
  5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29.  https://doi.org/10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bender SJ, Durkin CA, Berthiaume CT, Morales RL, Armbrust EV (2014) Transcriptional responses of three model diatoms to nitrate limitation of growth. Front Mar Sci 1:1–15.  https://doi.org/10.3389/fmars.2014.00003 CrossRefGoogle Scholar
  7. Berardesca E, Bertona M, Altabas K, Altabas V, Emanuele E (2012) Reduced ultraviolet-induced DNA damage and apoptosis in human skin with topical application of a photolyase-containing DNA repair enzyme cream: clues to skin cancer prevention. Mol Med Rep 5:570–574.  https://doi.org/10.3892/mmr.2011.673 CrossRefPubMedGoogle Scholar
  8. Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–1613.  https://doi.org/10.1111/j.1365-3040.2010.02167.x CrossRefPubMedGoogle Scholar
  9. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bornman JF, Vogelmann TC (1991) Effect of UV-B radiation on leaf optical properties measured with fibre optics. J Exp Bot 42:547–554CrossRefGoogle Scholar
  11. Bouchard JN, Roy S, Campbell DA (2006) UVB effects on the photosystem II-D1 protein of phytoplankton and natural phytoplankton communities. Photochem Photobiol 82:936–951.  https://doi.org/10.1562/2005-08-31-IR-666 CrossRefPubMedGoogle Scholar
  12. Casati P, Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132:1739–1754.  https://doi.org/10.1104/pp.103.022871 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Choi BY, Roh KS (2003) UV-B radiation affects chlorophyll and activation of rubisco by rubisco activase in Canavalia ensiformis L. leaves. J Plant Biol 46:117–121.  https://doi.org/10.1007/BF03030440 CrossRefGoogle Scholar
  14. Coesel S, Mangogna M, Ishikawa T, Heijde M, Rogato A, Finazzi G, Todo T, Bowler C, Falciatore A (2009) Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Rep 10:655–661.  https://doi.org/10.1038/embor.2009.59 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Critchley C (2000) Photoinhibition. In: Raghavendra AS (ed) Photosynthesis A Comprehensive Treatise. Cambridge University Press, Cambridge, UK, pp 264–272Google Scholar
  16. Cullen JJ, Lesser MP (1991) Inhibition of photosynthesis by ultraviolet radiation as a function of dose and dosage rate: results for a marine diatom. Mar Biol 111:183–190.  https://doi.org/10.1007/BF01319699 CrossRefGoogle Scholar
  17. De Mora S, Demers S, Vernet M (2000) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  18. Domingues N, Matos AR, Marques da Silva J, Cartaxana P (2012) Response of the diatom Phaeodactylum tricornutum to photooxidative stress resulting from high light exposure. PLoS One 7:e38162–e38166.  https://doi.org/10.1371/journal.pone.0038162 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dyhrman ST, Jenkins BD, Rynearson TA, Saito MA, Mercier ML, Alexander H, Whitney LP, Drzewianowski A, Bulygin VV, Bertrand EM, Wu Z, Benitez-Nelson C, Heithoff A (2012) The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS One 7:e33768.  https://doi.org/10.1371/journal.pone.0033768 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Emanuele E, Altabas V, Altabas K, Berardesca E (2013) Topical application of preparations containing DNA repair enzymes prevents ultraviolet-induced telomere shortening and c-FOS proto-oncogene hyperexpression in human skin: an experimental pilot study. J Drugs Dermatol 12:1017–1021PubMedGoogle Scholar
  21. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, NJGoogle Scholar
  22. Fricke A, Molis M, Wiencke C, Valdivia N, Chapman AS (2011) Effects of UV radiation on the structure of Arctic macrobenthic communities. Polar Biol 34:995–1009.  https://doi.org/10.1007/s00300-011-0959-4 CrossRefGoogle Scholar
  23. Fritz JJ, Neale PJ, Davis RF, Peloquin JA (2008) Response of Antarctic phytoplankton to solar UVR exposure: inhibition and recovery of photosynthesis in coastal and pelagic assemblages. Mar Ecol Prog Ser 365:1–16.  https://doi.org/10.3354/meps07610 CrossRefGoogle Scholar
  24. Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428.  https://doi.org/10.1104/pp.103.030049 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Geider RJ, Greene RM, Kolber Z, MacIntyre HL, Falkowski PG (1993) Fluorescence assessment of the maximum quantum efficiency of photosynthesis in the western North Atlantic. Deep-Sea Res Pt I 40:1205–1224.  https://doi.org/10.1016/0967-0637(93)90134-o CrossRefGoogle Scholar
  26. Gilstad M, Sakshaug E (1990) Growth rates of ten diatom species from the Barents Sea at different irradiances and day lengths. Mar Ecol Prog Ser 64:169–173.  https://doi.org/10.3354/meps064169 CrossRefGoogle Scholar
  27. Gladman S, Seemann T (2012) VelvetOptimiser: automate your Velvet assemblies. https://github.com/tseemann/VelvetOptimiser
  28. Gray JC (1992) Cytochrome f: Structure, function and biosynthesis. Photosynth Res 34:359–374.  https://doi.org/10.1007/BF00029811 CrossRefPubMedGoogle Scholar
  29. Greenberg B, Wilson M, Huang X-D, Duxbury C, Gerhardt K, Gensemer R (1997) The effects of ultraviolet-B radiation on higher plants. In: Wuncheng W (ed) Plants for Environmental Studies. CRC Press, Boca Raton, Florida, pp 1–35Google Scholar
  30. Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236CrossRefGoogle Scholar
  31. Gururani MA, Venkatesh J, Tran L-SP (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8:1304–1320.  https://doi.org/10.1016/j.molp.2015.05.005 CrossRefPubMedGoogle Scholar
  32. Heitman J, Model P (1987) Site-specific methylases induce the SOS DNA repair response in Escherichia coli. J Bacteriol 169:3243–3250CrossRefGoogle Scholar
  33. Helbling EW, Chalker BE, Dunlap WC, Holm-Hansen O, Villafañe VE (1996) Photoacclimation of antarctic marine diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85–101.  https://doi.org/10.1016/0022-0981(96)02591-9 CrossRefGoogle Scholar
  34. Herbstová M, Bína D, Koník P, Gardian Z, Vácha F, Litvín R (2015) Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. BBA-Bioenergetics 1847:534–543.  https://doi.org/10.1016/j.bbabio.2015.02.016 CrossRefPubMedGoogle Scholar
  35. Hou HJM, Najafpour MM, Moore GF, Allakhverdiev SI (eds) (2017) Photosynthesis: structures, mechanisms, and applications. Springer International Publishing, New York City, NYGoogle Scholar
  36. Huang L, McCluskey MP, Ni H, LaRossa RA (2002) Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J Bacteriol 184:6845–6858.  https://doi.org/10.1128/JB.184.24.6845-6858.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ifuku K, Noguchi T (2016) Structural coupling of extrinsic proteins with the oxygen-evolving center in photosystem II. Front Plant Sci 7:84.  https://doi.org/10.3389/fpls.2016.00084 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ifuku K, Ido K, Sato F (2011) Molecular functions of PsbP and PsbQ proteins in the photosystem II supercomplex. J Photochem Photobiol B Biol 104:158–164.  https://doi.org/10.1016/j.jphotobiol.2011.02.006 CrossRefGoogle Scholar
  39. Janion C, Sikora nee Wójcik A, Nowosielska A, Grzesiuk E (2002) Induction of the SOS response in starved Escherichia coli. Environ Mol Mutagen 40:129–133.  https://doi.org/10.1002/em.10094 CrossRefPubMedGoogle Scholar
  40. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431.  https://doi.org/10.1146/annurev.arplant.59.032607.092953 CrossRefPubMedGoogle Scholar
  41. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefGoogle Scholar
  42. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2013) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205.  https://doi.org/10.1093/nar/gkt1076 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Karentz D, Cleaver JE, Mitchell DL (1991) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J Phycol 27:326–341.  https://doi.org/10.1111/j.0022-3646.1991.00326.x CrossRefGoogle Scholar
  44. Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665.  https://doi.org/10.4319/lo.1993.38.8.1646 CrossRefGoogle Scholar
  45. Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88:923–929CrossRefGoogle Scholar
  46. Kolber ZS, Prášil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. BBA 1367:88–106.  https://doi.org/10.1016/s0005-2728(98)00135-2 CrossRefPubMedGoogle Scholar
  47. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359.  https://doi.org/10.1038/nmeth.1923 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lao K, Glazer AN (1996) Ultraviolet-B photodestruction of a light-harvesting complex. Proc Natl Acad Sci U S A 93:5258–5263CrossRefGoogle Scholar
  49. Ligowski R, Jordan RW, Assmy P (2012) Morphological adaptation of a planktonic diatom to growth in Antarctic sea ice. Mar Biol 159:817–827.  https://doi.org/10.1007/s00227-011-1857-6 CrossRefPubMedGoogle Scholar
  50. Logemann E, Tavernaro A, Schulz W, Somssich IE, Hahlbrock K (2000) UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley. Proc Natl Acad Sci U S A 97:1903–1907CrossRefGoogle Scholar
  51. Lohman KE (1960) The ubiquitous diatom–a brief survey of the present state of knowledge. Am J Sci A 258:180–191Google Scholar
  52. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.  https://doi.org/10.1186/s13059-014-0550-8 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mackerness S, Jordan BR, Thomas B (1999) Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV-B: 280–320 nm) in green and etiolated buds of pea (Pisum sativum L.). J Photochem Photobiol B Biol 48:180–188.  https://doi.org/10.1016/s1011-1344(99)00024-x CrossRefGoogle Scholar
  54. Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB, Berthiaume CT, Morales R, Allen AE, Armbrust EV (2012) Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc Natl Acad Sci U S A 109:E317–E325.  https://doi.org/10.1073/pnas.1118408109 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mauzerall D (1986) The optical cross section and absolute size of a photosynthetic unit. Photosynth Res 10:163–170.  https://doi.org/10.1007/BF00118279 CrossRefPubMedGoogle Scholar
  56. Maxwell DP, Laudenbach DE, Huner N (1995) Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 109:787–795CrossRefGoogle Scholar
  57. Melis A, Nemson JA, Harrison MA (1992) Damage to functional components and partial degradation of photosystem II reaction center proteins upon chloroplast exposure to ultraviolet-B radiation. BBA-Bioenergetics 1100:312–320.  https://doi.org/10.1016/0167-4838(92)90487-x CrossRefGoogle Scholar
  58. Nawkar G, Maibam P, Park J, Sahi V, Lee S, Kang C (2013) UV-induced cell death in plants. Int J Mol Sci 14:1608–1628.  https://doi.org/10.3390/ijms14011608 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Neale PJ, Cullen JJ, Davis RF (1998) Inhibition of marine photosynthesis by ultraviolet radiation: variable sensitivity of phytoplankton in the Weddell-Scotia Confluence during the austral spring. Limnol Oceanogr 43:433–448.  https://doi.org/10.4319/lo.1998.43.3.0433 CrossRefGoogle Scholar
  60. Nelson DL, Cox MM (2005) Lehninger principles of biochemistry, 4th edn. W. H. Freeman and Company, New York City, NYGoogle Scholar
  61. Olinares PDB, Kim J, van Wijk KJ (2011) The Clp protease system; a central component of the chloroplast protease network. BBA-Bioenergetics 1807:999–1011.  https://doi.org/10.1016/j.bbabio.2010.12.003 CrossRefPubMedGoogle Scholar
  62. Oxborough K, Moore CM, Suggett DJ, Lawson T, Chan HG, Geider RJ (2012) Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data. Limnol Oceanogr Methods 10:142–154.  https://doi.org/10.4319/lom.2012.10.142 CrossRefGoogle Scholar
  63. Pierre Y, Breyton C, Kramer D, Popot JL (1995) Purification and characterization of the cytochrome b6 f complex from Chlamydomonas reinhardtii. J Biol Chem 270:29342–29349CrossRefGoogle Scholar
  64. Post A, Lukins PB, Walker PJ, Larkum AW (1996) The effects of ultraviolet irradiation on P680+ reduction in PS II core complexes measured for individual S-states and during repetitive cycling of the oxygen-evolving complex. Photosynth Res 49:21–27.  https://doi.org/10.1007/BF00029424 CrossRefPubMedGoogle Scholar
  65. Ragni M, Airs RL, Leonardos N, Geider RJ (2008) Photoinhibition of PsII in Emiliania Huxleyi (Haptophyta) under high light stress: the roles of photoacclimation, photoprotection, and photorepair. J Phycol 44:670–683.  https://doi.org/10.1111/j.1529-8817.2008.00524.x CrossRefPubMedGoogle Scholar
  66. Rajagopal S, Murthy SD, Mohanty P (2000) Effect of ultraviolet-B radiation on intact cells of the cyanobacterium Spirulina platensis: characterization of the alterations in the thylakoid membranes. J Photochem Photobiol B Biol 54:61–66.  https://doi.org/10.1016/S1011-1344(99)00156-6 CrossRefGoogle Scholar
  67. Rastogi RP, Richa KA, Tyagi MB, Sinha RP (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010:592980–592932.  https://doi.org/10.4061/2010/592980 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Raven JA (2009) Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquat Microb Ecol 56:177–192.  https://doi.org/10.3354/ame01315 CrossRefGoogle Scholar
  69. Raven JA (2013) Rubisco: still the most abundant protein of Earth? New Phytol 198:1–3.  https://doi.org/10.1111/nph.12197 CrossRefPubMedGoogle Scholar
  70. Remmert M, Biegert A, Hauser A, Söding J (2011) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9:173–175.  https://doi.org/10.1038/nmeth.1818 CrossRefPubMedGoogle Scholar
  71. Rijstenbil JW (2002) Assessment of oxidative stress in the planktonic diatom Thalassiosira pseudonana in response to UVA and UVB radiation. J Plankton Res 24:1277–1288.  https://doi.org/10.1093/plankt/24.12.1277 CrossRefGoogle Scholar
  72. Roberts A, Pachter L (2012) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10:71–73.  https://doi.org/10.1038/nmeth.2251 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092.  https://doi.org/10.1093/bioinformatics/bts094 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sharon Y, Dishon G, Beer S (2011) The effects of UV radiation on chloroplast clumping and photosynthesis in the seagrass Halophila stipulacea grown under high-PAR conditions. Mar Biol 2011:1–6.  https://doi.org/10.1155/2011/483428 CrossRefGoogle Scholar
  75. Shrestha RP, Tesson B, Norden-Krichmar T, Federowicz S, Hildebrand M, Allen AE (2012) Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genomics 13:499.  https://doi.org/10.1186/1471-2164-13-499 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sinha RP, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236.  https://doi.org/10.1039/b201230h CrossRefPubMedGoogle Scholar
  77. Smith KC, Wang TV, Sharma RC (1987) recA-dependent DNA repair in UV-irradiated Escherichia coli. J Photochem Photobiol B Biol 1:1–11CrossRefGoogle Scholar
  78. Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960.  https://doi.org/10.1093/bioinformatics/bti125 CrossRefPubMedGoogle Scholar
  79. Strid Å, Chow WS, Anderson JM (1990) Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. BBA 1020:260–268.  https://doi.org/10.1016/0005-2728(90)90156-x CrossRefGoogle Scholar
  80. Suggett DJ, Moore CM, Hickman AE, Geider RJ (2009) Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state. Mar Ecol Prog Ser 376:1–19.  https://doi.org/10.3354/meps07830 CrossRefGoogle Scholar
  81. Surplus SL, Jordan BR, Murphy AM, Carr JP, Thomas B, Mackerness SAH (1998) Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell Environ 21:685–694.  https://doi.org/10.1046/j.1365-3040.1998.00325.x CrossRefGoogle Scholar
  82. Szilárd A, Sass L, Deák Z, Vass I (2007) The sensitivity of photosystem II to damage by UV-B radiation depends on the oxidation state of the water-splitting complex. BBA 1767:876–882.  https://doi.org/10.1016/j.bbabio.2006.11.020 CrossRefPubMedGoogle Scholar
  83. Teramura AH, Ziska LH (1996) Ultraviolet-B radiation and photosynthesis. In: Baker NR (ed) Photosynthesis and the Environment. Springer Netherlands, Dordrecht, NL, pp 435–450Google Scholar
  84. Tevini M, Teramura AH (1989) UV-B effects on terrestrial plants. Photochem Photobiol 50:479–487.  https://doi.org/10.1111/j.1751-1097.1989.tb05552.x CrossRefGoogle Scholar
  85. The Gene Ontology Consortium (2017) Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res 45:D331–D338.  https://doi.org/10.1093/nar/gkw1108 CrossRefGoogle Scholar
  86. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169.  https://doi.org/10.1093/nar/gkw1099 CrossRefGoogle Scholar
  87. Vass I, Sass L, Spetea C, Bakou A, Ghanotakis DF, Petrouleas V (1996) UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Biochemistry 35:8964–8973.  https://doi.org/10.1021/bi9530595 CrossRefPubMedGoogle Scholar
  88. Verde C, Prisco GD (2012) Adaptation and evolution in marine environments, Volume 2: The impacts of global change on biodiversity. Springer, Berlin/Heidelberg, DEGoogle Scholar
  89. Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge, UKGoogle Scholar
  90. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer New York, New York City, NYCrossRefGoogle Scholar
  91. Wu Y, Li Z, Du W, Gao K (2015) Physiological response of marine centric diatoms to ultraviolet radiation, with special reference to cell size. J Photochem Photobiol B Biol 153:1–6.  https://doi.org/10.1016/j.jphotobiol.2015.08.035 CrossRefGoogle Scholar
  92. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829.  https://doi.org/10.1101/gr.074492.107 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zhang Z-S, Jin L-Q, Li Y-T, Tikkanen M, Li Q-M, Ai X-Z, Gao H-Y (2016) Ultraviolet-B radiation (UV-B) relieves chilling-light-induced PSI photoinhibition and accelerates the recovery of CO2 assimilation in cucumber (Cucumis sativus L.) leaves. Sci Rep 6:34455.  https://doi.org/10.1038/srep34455 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zulu NN, Zienkiewicz K, Vollheyde K, Feussner I (2018) Current trends to comprehend lipid metabolism in diatoms. Prog Lipid Res 70:1–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Robert W. Read
    • 1
  • David C. Vuono
    • 1
  • Iva Neveux
    • 1
  • Carl Staub
    • 2
  • Joseph J. Grzymski
    • 1
    Email author
  1. 1.Division of Earth and Ecosystem SciencesDesert Research InstituteRenoUSA
  2. 2.Agtron, Inc.RenoUSA

Personalised recommendations