Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens

  • Snizhana Olishevska
  • Arvin Nickzad
  • Eric Déziel


Overuse of broad-spectrum antibiotics to control human and plant pathogens greatly accelerated the development of antibiotic resistance among bacteria and fungi. Therefore, usage of new approaches is necessary to control outbreaks of phytopathogenic diseases as well as multidrug-resistant human pathogens. Many of the polyketides (PKs) and lipopetides (LPs) produced by Bacillus and Paenibacillus species have been described as antimicrobial agents that can be potentially applied as sustainable bio-organic products in medicine against human pathogens and in agriculture for controlling plant pathogens. The present review provides a general information about the classification and biochemical structure of known Bacillus- and Paenibacillus-secreted PKs, as well as ribosomally and nonribosomally synthesized peptides, their functional features, gene clusters involved in their production, and the mode of action of these metabolites.


Lipopeptides Lantibiotics Bacteriocins 



This work was supported by grants from the Consortium de recherche et innovations en bioprocédés industriels au Québec (CRIBIQ) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abriouel H, Franz CM, Ben Omar N, Galvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35(1):201–232. PubMedCrossRefGoogle Scholar
  2. Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ (2018) The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 42(6):805–828. PubMedCrossRefGoogle Scholar
  3. Ahern M, Verschueren S, van Sinderen D (2003) Isolation and characterisation of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol Lett 220(1):127–131PubMedCrossRefGoogle Scholar
  4. Aleti G, Sessitsch A, Brader G (2015) Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput Struct Biotechnol J 13:192–203. PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alkhalili RN, Canback B (2018) Identification of putative novel class-I Lanthipeptides in firmicutes: a combinatorial in silico analysis approach performed on genome sequenced bacteria and a close inspection of Z-geobacillin lanthipeptide biosynthesis gene cluster of the thermophilic Geobacillus sp. strain ZGt-1. Int J Mol Sci 19(9).
  6. Arguelles Arias A, Ongena M, Devreese B, Terrak M, Joris B, Fickers P (2013) Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS One 8(12):e83037. PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Factories 8:63. CrossRefGoogle Scholar
  8. Arias AA, Joris B, Fickers P (2014) Dual mode of action of amylolysin: a type-B lantibiotic produced by Bacillus amyloliquefaciens GA1. Protein Pept Lett 21(4):336–340. CrossRefGoogle Scholar
  9. Ash C, Farrow J, Wallbanks S, Collins M (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13(4):202–206CrossRefGoogle Scholar
  10. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 64(3):253–260. PubMedCrossRefGoogle Scholar
  11. Awais M, Shah AA, Hameed A, Hasan F (2007) Isolation, identification and optimization of bacitracin produced by Bacillus sp. Pak J Bot 39(4):1303Google Scholar
  12. Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98(3):585–603PubMedCrossRefGoogle Scholar
  13. Baindara P, Chaudhry V, Mittal G, Liao LM, Matos CO, Khatri N, Franco OL, Patil PB, Korpole S (2016) Characterization of the antimicrobial peptide penisin, a class Ia novel lantibiotic from Paenibacillus sp. strain A3. Antimicrob Agents Chemother 60(1):580–591. PubMedCrossRefGoogle Scholar
  14. Barbosa J, Caetano T, Mendo S (2015) Class I and class II lanthipeptides produced by Bacillus spp. J Nat Prod 78(11):2850–2866. PubMedCrossRefGoogle Scholar
  15. Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48(2):159–169PubMedCrossRefGoogle Scholar
  16. Bechet M, Caradec T, Hussein W, Abderrahmani A, Chollet M, Leclere V, Dubois T, Lereclus D, Pupin M, Jacques P (2012) Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl Microbiol Biotechnol 95(3):593–600. PubMedCrossRefGoogle Scholar
  17. Begley M, Cotter PD, Hill C, Ross RP (2009) Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol 75(17):5451–5460. PubMedPubMedCentralCrossRefGoogle Scholar
  18. Beric T, Kojic M, Stankovic S, Topisirovic L, Degrassi G, Myers M, Venturi V, Fira D (2012) Antimicrobial activity of Bacillus sp natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technol Biotechnol 50(1):25–31Google Scholar
  19. Besson F, Peypoux F, Michel G (1978) Action of mycosubtilin and of bacillomycin L on Micrococcus luteus cells and protoplasts: influence of the polarity of the antibiotics upon their action on the bacterial cytoplasmic membrane. FEBS Lett 90(1):36–40PubMedCrossRefGoogle Scholar
  20. Brotz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42(1):154–160PubMedPubMedCentralCrossRefGoogle Scholar
  21. Butcher RA, Schroeder FC, Fischbach MA, Straight PD, Kolter R, Walsh CT, Clardy J (2007) The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc Natl Acad Sci U S A 104(5):1506–1509. PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. Pesticides in the modern world—pesticides use and management. InTech, Rijeka, pp 273–302Google Scholar
  23. Chehimi S, Delalande F, Sable S, Hajlaoui MR, Van Dorsselaer A, Limam F, Pons AM (2007) Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can J Microbiol 53(2):284–290. PubMedCrossRefGoogle Scholar
  24. Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Sussmuth RD, Borriss R (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol 188(11):4024–4036. PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL (2008) Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol 47(3):180–186. PubMedCrossRefGoogle Scholar
  26. Chen XH, Scholz R, Borriss M, Junge H, Mogel G, Kunz S, Borriss R (2009) Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol 140(1–2):38–44. PubMedCrossRefGoogle Scholar
  27. Chmara H (1985) Inhibition of glucosamine synthase by bacilysin and anticapsin. J Gen Microbiol 131(2):265–271. PubMedCrossRefGoogle Scholar
  28. Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, Park SH (2009) Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol 191(10):3350–3358. PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36(1):4–31. PubMedCrossRefGoogle Scholar
  30. Cochrane SA, Lohans CT, van Belkum MJ, Bels MA, Vederas JC (2015a) Studies on tridecaptin B(1), a lipopeptide with activity against multidrug resistant Gram-negative bacteria. Org Biomol Chem 13(21):6073–6081. PubMedCrossRefGoogle Scholar
  31. Cochrane SA, Surgenor RR, Khey KM, Vederas JC (2015b) Total synthesis and stereochemical assignment of the antimicrobial lipopeptide cerexin A1. Org Lett 17(21):5428–5431. PubMedCrossRefGoogle Scholar
  32. Cochrane SA, Findlay B, Bakhtiary A, Acedo JZ, Rodriguez-Lopez EM, Mercier P, Vederas JC (2016) Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II. Proc Natl Acad Sci U S A 113(41):11561–11566. PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95–105. PubMedCrossRefGoogle Scholar
  34. Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94(7):2667–2679. PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ding R, Wu XC, Qian CD, Teng Y, Li O, Zhan ZJ, Zhao YH (2011) Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. J Microbiol 49(6):942–949. PubMedCrossRefGoogle Scholar
  36. Dischinger J, Josten M, Szekat C, Sahl HG, Bierbaum G (2009) Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS One 4(8):e6788. PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359. PubMedCrossRefGoogle Scholar
  38. Garcia-Gonzalez E, Muller S, Ensle P, Sussmuth RD, Genersch E (2014a) Elucidation of sevadicin, a novel non-ribosomal peptide secondary metabolite produced by the honey bee pathogenic bacterium Paenibacillus larvae. Environ Microbiol 16(5):1297–1309PubMedCrossRefGoogle Scholar
  39. Garcia-Gonzalez E, Muller S, Hertlein G, Heid N, Sussmuth RD, Genersch E (2014b) Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae. Microbiologyopen 3(5):642–656. PubMedPubMedCentralCrossRefGoogle Scholar
  40. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Factories 15(1):203. CrossRefGoogle Scholar
  41. Gray EJ, Di Falco M, Souleimanov A, Smith DL (2006a) Proteomic analysis of the bacteriocin thuricin 17 produced by Bacillus thuringiensis NEB17. FEMS Microbiol Lett 255(1):27–32. PubMedCrossRefGoogle Scholar
  42. Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL (2006b) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100(3):545–554. PubMedCrossRefGoogle Scholar
  43. Guo Y, Huang E, Yuan C, Zhang L, Yousef AE (2012) Isolation of a Paenibacillus sp. strain and structural elucidation of its broad-spectrum lipopeptide antibiotic. Appl Environ Microbiol 78(9):3156–3165. PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gustafson K, Roman M, Fenical W (1989) The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J Am Chem Soc 111(19):7519–7524CrossRefGoogle Scholar
  45. He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE (2007) Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl Environ Microbiol 73(1):168–178. PubMedCrossRefGoogle Scholar
  46. He Z, Yuan C, Zhang L, Yousef AE (2008) N-terminal acetylation in paenibacillin, a novel lantibiotic. FEBS Lett 582(18):2787–2792. PubMedCrossRefGoogle Scholar
  47. Helfrich EJ, Piel J (2016) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 33(2):231–316. PubMedCrossRefGoogle Scholar
  48. Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Eng 48(26):4688–4716. CrossRefGoogle Scholar
  49. Hinchliffe P, Yang QE, Portal E, Young T, Li H, Tooke CL, Carvalho MJ, Paterson NG, Brem J, Niumsup PR, Tansawai U, Lei L, Li M, Shen Z, Wang Y, Schofield CJ, Mulholland AJ, Shen J, Fey N, Walsh TR, Spencer J (2017) Insights into the mechanistic basis of plasmid-mediated colistin resistance from crystal structures of the catalytic domain of MCR-1. Sci Rep 7:39392. PubMedPubMedCentralCrossRefGoogle Scholar
  50. Holland IB, Roberts CF (1964) Some properties of a new bacteriocin formed by Bacillus megaterium. J Gen Microbiol 35:271–285. PubMedCrossRefGoogle Scholar
  51. Huang E, Yousef AE (2012) Draft genome sequence of Paenibacillus polymyxa OSY-DF, which coproduces a lantibiotic, paenibacillin, and polymyxin E1. J Bacteriol 194(17):4739–4740PubMedPubMedCentralCrossRefGoogle Scholar
  52. Huang E, Yousef AE (2014) The lipopeptide antibiotic paenibacterin binds to the bacterial outer membrane and exerts bactericidal activity through cytoplasmic membrane damage. Appl Environ Microbiol 80(9):2700–2704. PubMedPubMedCentralCrossRefGoogle Scholar
  53. Huang E, Yousef AE (2015) Biosynthesis of paenibacillin, a lantibiotic with N-terminal acetylation, by Paenibacillus polymyxa. Microbiol Res 181:15–21. PubMedCrossRefGoogle Scholar
  54. Huang T, Geng H, Miyyapuram VR, Sit CS, Vederas JC, Nakano MM (2009) Isolation of a variant of subtilosin A with hemolytic activity. J Bacteriol 191(18):5690–5696. PubMedPubMedCentralCrossRefGoogle Scholar
  55. Huang E, Guo Y, Yousef AE (2014) Biosynthesis of the new broad-spectrum lipopeptide antibiotic paenibacterin in Paenibacillus thiaminolyticus OSY-SE. Res Microbiol 165(3):243–251. PubMedCrossRefGoogle Scholar
  56. Hyronimus B, Le Marrec C, Urdaci MC (1998) Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J Appl Microbiol 85(1):42–50PubMedCrossRefGoogle Scholar
  57. Jung M, Lee S, Kim H (2000) Recent studies on natural products as anti-HIV agents. Curr Med Chem 7(6):649–661PubMedCrossRefGoogle Scholar
  58. Kalyon B, Helaly SE, Scholz R, Nachtigall J, Vater J, Borriss R, Sussmuth RD (2011) Plantazolicin A and B: structure elucidation of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42. Org Lett 13(12):2996–2999. PubMedCrossRefGoogle Scholar
  59. Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S (2005) Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J Appl Microbiol 98(4):881–888. PubMedCrossRefGoogle Scholar
  60. Kato T, Shoji J (1976) The amino acid sequence of octapeptin C1 (333-25) studies on antibiotics from the genus Bacillus. XIX. J Antibiot (Tokyo) 29(12):1339–1340CrossRefGoogle Scholar
  61. Kato T, Sakazaki R, Hinoo H, Shoji J (1979) The structures of tridecaptins B and C (studies on antibiotics from the genus Bacillus. XXV). J Antibiot (Tokyo) 32(4):305–312CrossRefGoogle Scholar
  62. Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JC (2004) Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives. Biochemistry 43(12):3385–3395. PubMedCrossRefGoogle Scholar
  63. Kenig M, Abraham EP (1976) Antimicrobial activities and antagonists of bacilysin and anticapsin. J Gen Microbiol 94(1):37–45. PubMedCrossRefGoogle Scholar
  64. Kiss A, Baliko G, Csorba A, Chuluunbaatar T, Medzihradszky KF, Alfoldi L (2008) Cloning and characterization of the DNA region responsible for Megacin A-216 production in Bacillus megaterium 216. J Bacteriol 190(19):6448–6457. PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266. PubMedCrossRefGoogle Scholar
  66. Konz D, Klens A, Schorgendorfer K, Marahiel MA (1997) The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol 4, 927(12):–937.
  67. Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186(4):1084–1096PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lawton EM, Ross RP, Hill C, Cotter PD (2007) Two-peptide lantibiotics: a medical perspective. Mini-Rev Med Chem 7(12):1236–1247PubMedCrossRefGoogle Scholar
  69. Le Marrec C, Hyronimus B, Bressollier P, Verneuil B, Urdaci MC (2000) Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl Environ Microbiol 66(12):5213–5220PubMedPubMedCentralCrossRefGoogle Scholar
  70. Leclere V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71(8):4577–4584. PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lee H, Churey JJ, Worobo RW (2009a) Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol Lett 299(2):205–213. PubMedCrossRefGoogle Scholar
  72. Lee KD, Gray EJ, Mabood F, Jung WJ, Charles T, Clark SR, Ly A, Souleimanov A, Zhou X, Smith DL (2009b) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229(4):747–755. PubMedCrossRefGoogle Scholar
  73. Lee SH, Cho YE, Park SH, Balaraju K, Park JW, Lee SW, Park K (2013) An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41(1):49–58. CrossRefGoogle Scholar
  74. Li W, Tang XX, Yan X, Wu Z, Yi ZW, Fang MJ, Su X, Qiu YK (2016) A new macrolactin antibiotic from deep sea-derived bacteria Bacillus subtilis B5. Nat Prod Res 30:2777–2782. CrossRefGoogle Scholar
  75. Li YX, Zhong Z, Hou P, Zhang WP, Qian PY (2018a) Resistance to nonribosomal peptide antibiotics mediated by D-stereospecific peptidases. Nat Chem Biol 14(4):381–387. PubMedCrossRefGoogle Scholar
  76. Li YX, Zhong Z, Zhang WP, Qian PY (2018b) Discovery of cationic nonribosomal peptides as Gram-negative antibiotics through global genome mining. Nat Commun 9.
  77. Liu R-F, Zhang D-J, Li Y-G, Tao L-M, Tian L (2010) A new antifungal cyclic lipopeptide from Bacillus marinus B-9987. Helv Chim Acta 93(12):2419–2425. CrossRefGoogle Scholar
  78. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16(2):161–168. PubMedCrossRefGoogle Scholar
  79. Lohans CT, Huang Z, van Belkum MJ, Giroud M, Sit CS, Steels EM, Zheng J, Whittal RM, McMullen LM, Vederas JC (2012) Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy. J Am Chem Soc 134(48):19540–19543. PubMedCrossRefGoogle Scholar
  80. Lohans CT, van Belkum MJ, Cochrane SA, Huang Z, Sit CS, McMullen LM, Vederas JC (2014) Biochemical, structural, and genetic characterization of tridecaptin A(1), an antagonist of Campylobacter jejuni. Chembiochem 15(2):243–249. PubMedCrossRefGoogle Scholar
  81. Luo C, Liu X, Zhou X, Guo J, Truong J, Wang X, Zhou H, Li X, Chen Z (2015) Unusual biosynthesis and structure of locillomycins from Bacillus subtilis 916. Appl Environ Microbiol 81(19):6601–6609. PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ma Z, Wang N, Hu J, Wang S (2012) Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot 65(6):317–322 PubMedCrossRefGoogle Scholar
  83. Maget-Dana R, Thimon L, Peypoux F, Ptak M (1992) Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74(12):1047–1051PubMedCrossRefGoogle Scholar
  84. Martin NI, Hu H, Moake MM, Churey JJ, Whittal R, Worobo RW, Vederas JC (2003) Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem 278(15):13124–13132. PubMedCrossRefGoogle Scholar
  85. Marx R, Stein T, Entian KD, Glaser SJ (2001) Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1H-NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. J Protein Chem 20(6):501–506PubMedCrossRefGoogle Scholar
  86. McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci U S A 103(46):17243–17248. PubMedPubMedCentralCrossRefGoogle Scholar
  87. Meyers E, Parker WL, Brown WE (1976) A nomenclature proposal for the octapeptin antibiotics. J Antibiot (Tokyo) 29(11):1241–1242CrossRefGoogle Scholar
  88. Muller S, Garcia-Gonzalez E, Mainz A, Hertlein G, Heid NC, Mosker E, van den Elst H, Overkleeft HS, Genersch E, Sussmuth RD (2014) Paenilamicin: structure and biosynthesis of a hybrid nonribosomal peptide/polyketide antibiotic from the bee pathogen Paenibacillus larvae. Angew Chem Int Ed Eng 53(40):10821–10825. CrossRefGoogle Scholar
  89. Nihorimbere V, Ongena C, Cawoy H, Brostaux Y, Kakana P, Jourdan E, Thonart P (2010) Beneficial effects of Bacillus subtilis on field-grown tomato in Burundi: reduction of local Fusarium disease and growth promotion. Afr J Microbiol Res 4(11):1135–1142Google Scholar
  90. Niu B, Vater J, Rueckert C, Blom J, Lehmann M, Ru JJ, Chen XH, Wang Q, Borriss R (2013) Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol 13:137. PubMedPubMedCentralCrossRefGoogle Scholar
  91. O'Hagan D (1992) Biosynthesis of polyketide metabolites. Nat Prod Rep 9(5):447–479PubMedCrossRefGoogle Scholar
  92. Oman TJ, van der Donk WA (2009) Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem Biol 4(10):865–874. PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125. PubMedCrossRefGoogle Scholar
  94. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9(4):1084–1090. PubMedCrossRefGoogle Scholar
  95. Orwa JA, Govaerts C, Busson R, Roets E, Van Schepdael A, Hoogmartens J (2001) Isolation and structural characterization of polymyxin B components. J Chromatogr A 912(2):369–373PubMedCrossRefGoogle Scholar
  96. Oscariz JC, Pisabarro AG (2000) Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. J Appl Microbiol 89(2):361–369PubMedCrossRefGoogle Scholar
  97. Oscariz JC, Lasa I, Pisabarro AG (1999) Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol Lett 178(2):337–341PubMedCrossRefGoogle Scholar
  98. Oscariz JC, Cintas L, Holo H, Lasa I, Nes IF, Pisabarro AG (2006) Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol Lett 254(1):108–115. PubMedCrossRefGoogle Scholar
  99. Patel H, Tscheka C, Edwards K, Karlsson G, Heerklotz H (2011) All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochim Biophys Acta 1808(8):2000–2008. PubMedCrossRefGoogle Scholar
  100. Pattnaik P, Kaushik JK, Grover S, Batish VK (2001) Purification and characterization of a bacteriocin-like compound (lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J Appl Microbiol 91(4):636–645PubMedCrossRefGoogle Scholar
  101. Pattnaik P, Grover S, Batish VK (2005) Effect of environmental factors on production of lichenin, a chromosomally encoded bacteriocin-like compound produced by Bacillus licheniformis 26L-10/3RA. Microbiol Res 160(2):213–218PubMedCrossRefGoogle Scholar
  102. Pichard B, Larue JP, Thouvenot D (1995) Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett 133(3):215–218PubMedCrossRefGoogle Scholar
  103. Pirri G, Giuliani A, Nicoletto SF, Pizzuto L, Rinaldi AC (2009) Lipopeptides as anti-infectives: a practical perspective. Cent Eur J Biol 4(3):258–273. CrossRefGoogle Scholar
  104. Qi G, Zhu F, Du P, Yang X, Qiu D, Yu Z, Chen J, Zhao X (2010) Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 31(11):1978–1986. PubMedCrossRefGoogle Scholar
  105. Qian CD, Liu TZ, Zhou SL, Ding R, Zhao WP, Li O, Wu XC (2012a) Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii. BMC Microbiol 12:197. PubMedPubMedCentralCrossRefGoogle Scholar
  106. Qian CD, Wu XC, Teng Y, Zhao WP, Li O, Fang SG, Huang ZH, Gao HC (2012b) Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother 56(3):1458–1465. PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ramarathnam R, Bo S, Chen Y, Fernando WG, Xuewen G, de Kievit T (2007) Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53(7):901–911. PubMedCrossRefGoogle Scholar
  108. Raza W, Yang W, Shen QR (2008) Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J Plant Pathol 90(3):419–430Google Scholar
  109. Raza W, Yang XM, Wu HS, Wang Y, Xu YC, Shen QR (2009) Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f. sp nevium. Eur J Plant Pathol 125(3):471–483. CrossRefGoogle Scholar
  110. Righi E, Giacomazzi CG, Bassetti M, Bisio F, Soro O, McDermott JL, Varnier OE, Ratto S, Viscoli C (2007) Soft-tissue infection with Absidia corymbifera and kidney complications in an AIDS patient. Med Mycol 45(7):637–640. PubMedCrossRefGoogle Scholar
  111. Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20(4):430–440. PubMedCrossRefGoogle Scholar
  112. Romero-Tabarez M, Jansen R, Sylla M, Lunsdorf H, Haussler S, Santosa DA, Timmis KN, Molinari G (2006) 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. Antimicrob Agents Chemother 50(5):1701–1709. PubMedPubMedCentralCrossRefGoogle Scholar
  113. Rybakova D, Wetzlinger U, Muller H, Berg G (2015) Complete genome sequence of Paenibacillus polymyxa strain Sb3-1, a soilborne bacterium with antagonistic activity toward plant pathogens. Genome Announc 3(2).
  114. Schneider K, Chen XH, Vater J, Franke P, Nicholson G, Borriss R, Sussmuth RD (2007) Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J Nat Prod 70(9):1417–1423. PubMedCrossRefGoogle Scholar
  115. Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, Schwecke T, Herfort S, Lasch P, Borriss R (2014) Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol 196(10):1842–1852. PubMedPubMedCentralCrossRefGoogle Scholar
  116. Sebei S, Zendo T, Boudabous A, Nakayama J, Sonomoto K (2007) Characterization, N-terminal sequencing and classification of cerein MRX1, a novel bacteriocin purified from a newly isolated bacterium: Bacillus cereus MRX1. J Appl Microbiol 103(5):1621–1631. PubMedCrossRefGoogle Scholar
  117. Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7(2):285–295PubMedCrossRefGoogle Scholar
  118. Shoji J, Kato T, Sakazaki R (1976) The total structure of cerexin A (studies on antibiotics from the genus Bacillus. XVI). J Antibiot (Tokyo) 29(12):1268–1274CrossRefGoogle Scholar
  119. Shoji J, Kato T, Hinoo H (1977) The structures of two new polymyxin group antibiotics. J Antibiot (Tokyo) 30(5):427–429CrossRefGoogle Scholar
  120. Singh AK, Ghodke I, Chhatpar HS (2009) Pesticide tolerance of Paenibacillus sp. D1 and its chitinase. J Environ Manag 91(2):358–362. CrossRefGoogle Scholar
  121. Sogn JA (1976) Structure of the peptide antibiotic polypeptin. J Med Chem 19(10):1228–1231PubMedCrossRefGoogle Scholar
  122. Sood S, Steinmetz H, Beims H, Mohr KI, Stadler M, Djukic M, von der Ohe W, Steinert M, Daniel R, Muller R (2014) Paenilarvins: iturin family lipopeptides from the honey bee pathogen Paenibacillus larvae. Chembiochem 15(13):1947–1955. PubMedCrossRefGoogle Scholar
  123. Stansly PG, Shepherd RG, White HJ (1947) Polymyxin: a new chemotherapeutic agent. Bull Johns Hopkins Hosp 81(1):43–54PubMedGoogle Scholar
  124. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857. PubMedCrossRefGoogle Scholar
  125. Stein T, Dusterhus S, Stroh A, Entian KD (2004) Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol 70(4):2349–2353PubMedPubMedCentralCrossRefGoogle Scholar
  126. Stern NJ, Svetoch EA, Urakov NN, Eruslanov BV, Volodina LI, Kovalev YN, Kudryavtseva TY, Perelygin VV, Pokhilenko VD, Levchuk VP, Borzenkov VN (2013) Bacteriocins and novel bacterial strains. United States patent application US 13/533,037 Google Scholar
  127. Sumi CD, Yang BW, Yeo IC, Hahm YT (2015) Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61(2):93–103. PubMedCrossRefGoogle Scholar
  128. Sun J, Zhang H, Liu YH, Feng Y (2018) Towards understanding MCR-like colistin resistance. Trends Microbiol 26:794–808. PubMedCrossRefGoogle Scholar
  129. Svetoch EA, Stern NJ, Eruslanov BV, Kovalev YN, Volodina LI, Perelygin VV, Mitsevich EV, Mitsevich IP, Pokhilenko VD, Borzenkov VN, Levchuk VP, Svetoch OE, Kudriavtseva TY (2005) Isolation of Bacillus circulans and Paenibacillus polymyxa strains inhibitory to Campylobacter jejuni and characterization of associated bacteriocins. J Food Prot 68(1):11–17PubMedCrossRefGoogle Scholar
  130. Tapi A, Chollet-Imbert M, Scherens B, Jacques P (2010) New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85(5):1521–1531. PubMedCrossRefGoogle Scholar
  131. Teng Y, Zhao W, Qian C, Li O, Zhu L, Wu X (2012) Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiol 12:45. PubMedPubMedCentralCrossRefGoogle Scholar
  132. Umezawa H, Aoyagi T, Nishikiori T, Okuyama A, Yamagishi Y, Hamada M, Takeuchi T (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. I. Taxonomy, production, isolation and preliminary characterization. J Antibiot (Tokyo) 39(6):737–744CrossRefGoogle Scholar
  133. Vater J, Niu B, Dietel K, Borriss R (2015) Characterization of novel fusaricidins produced by Paenibacillus polymyxa-M1 using MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 26(9):1548–1558. PubMedCrossRefGoogle Scholar
  134. Velkov T, Thompson PE, Nation RL, Li J (2010) Structure–activity relationships of polymyxin antibiotics. J Med Chem 53(5):1898–1916. PubMedPubMedCentralCrossRefGoogle Scholar
  135. Velkov T, Gallardo-Godoy A, Swarbrick JD, Blaskovich MAT, Elliott AG, Han M, Thompson PE, Roberts KD, Huang JX, Becker B, Butler MS, Lash LH, Henriques ST, Nation RL, Sivanesan S, Sani MA, Separovic F, Mertens H, Bulach D, Seemann T, Owen J, Li J, Cooper MA (2018) Structure, function, and biosynthetic origin of octapeptin antibiotics active against extensively drug-resistant gram-negative bacteria. Cell Chem Biol 25(4):380–391 e5. PubMedCrossRefGoogle Scholar
  136. Von Tersch MA, Carlton BC (1983) Bacteriocin from Bacillus megaterium ATCC 19213: comparative studies with megacin A-216. J Bacteriol 155(2):866–871Google Scholar
  137. Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303(5665):1805–1810. PubMedCrossRefGoogle Scholar
  138. Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501. PubMedCrossRefGoogle Scholar
  139. Wu XC, Shen XB, Ding R, Qian CD, Fang HH, Li O (2010) Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiol Lett 310(1):32–38. PubMedCrossRefGoogle Scholar
  140. Wu XC, Qian CD, Fang HH, Wen YP, Zhou JY, Zhan ZJ, Ding R, Li O, Gao H (2011) Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6-B70 active against methicillin-resistant Staphylococcus aureus. Microb Biotechnol 4(4):491–502. PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X (2015) Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep 5:12975. PubMedPubMedCentralCrossRefGoogle Scholar
  142. Yousef A. E, Yaoqi G, Huang En (2013) Biosynthesis of paenibacillin. World Intellectual Property Organization WO/2013/180699Google Scholar
  143. Yu WB, Ye BC (2016) High-level iron mitigates fusaricidin-induced membrane damage and reduces membrane fluidity leading to enhanced drug resistance in Bacillus subtilis. J Basic Microbiol 56(5):502–509. PubMedCrossRefGoogle Scholar
  144. Zarei I (2012) Biosynthesis of bacitracin in stirred fermenter by Bacillus licheniformis using defatted oil seed cakes as substrate. Mod Appl Sci 6(2):30CrossRefGoogle Scholar
  145. Zhang B, Dong C, Shang Q, Han Y, Li P (2013) New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L. Biochim Biophys Acta 1828(9):2230–2237. PubMedCrossRefGoogle Scholar
  146. Zheng G, Hehn R, Zuber P (2000) Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol 182(11):3266–3273PubMedPubMedCentralCrossRefGoogle Scholar
  147. Zimmerman SB, Schwartz CD, Monaghan RL, Pelak BA, Weissberger B, Gilfillan EC, Mochales S, Hernandez S, Currie SA, Tejera E, Stapley EO (1987) Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. I. Production, taxonomy and antibacterial activity. J Antibiot (Tokyo) 40(12):1677–1681CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INRS-Institut Armand-FrappierLavalCanada

Personalised recommendations