Applied Microbiology and Biotechnology

, Volume 103, Issue 2, pp 577–587 | Cite as

Insights into regulatory roles of MAPK-cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens

  • Sen-Miao TongEmail author
  • Ming-Guang FengEmail author


Fungal entomopathogenicity may have evolved at least 200 million years later than carnivorism of nematophagous fungi on Earth. This mini-review focuses on the composition and regulatory roles of mitogen-activated protein kinase (MAPK) cascades, which act as stress-responsive signaling pathways. Unveiled by genomic comparison, three MAPK cascades of these mycopathogens consist of singular MAPKs (Fus3/Hog1/Slt2), MAPK kinases (Ste7/Pbs2/Mkk1), and MAPK kinase kinases (Ste11/Ssk2/Bck1). All cascaded components characterized in fungal entomopathogens play conserved and special roles in regulating multiple stress responses and phenotypes associated with biological control potential. Fus3-cascaded components are indispensable for fungal growth on oligotrophic substrata and virulence, and mediate cell tolerance to Na+/K+ toxicity, which is often misinterpreted as hyperosmotic effect but readily clarified by transcriptional changes of Na+/K+ ATPase genes and/or cell responses to osmotic polyols. Hog1-cascaded components regulate osmotolerance positively and phenylpyrrole-type fungicide resistance negatively, and also play differential roles in cell growth, conidiation, virulence, and responses to other stress cues. Ste11 has no stress-responsive role in the Beauveria Hog1 cascade despite an essential role in branched yeast Hog1 cascade. Slt2-cascaded components are required for mediation of cell wall integrity and repair of cell wall damage. A crosstalk between Hog1 and Slt2 cascades ensures fungal osmotolerance inside or outside insect. In nematode-trapping fungi, Slt2 is indispensable for cell wall integrity, conidiation, and mycelial trap formation, suggesting that the Slt2 cascade could have evolved along a distinct trajectory required for fungal carnivorism and dispersal/survival in nematode habitats. Altogether, the MAPK cascades are major parts of signaling network that regulate fungal adaptation to insects and nematodes and their habitats.


Entomopathogenic fungi Nematophagous fungi MAPK signaling cascades Stress response Signal transduction Biological control potential 


Funding information

This work was financially supported by the Ministry of Science and Technology of the People’s Republic of China (Grant No.: 2017YFD0201202), the National Natural Science Foundation of China (Grant No.: 31801795), and the Zhejiang A&F University Research Fund (Grant No.: 2018FR018).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Bahn YS (2008) Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryot Cell 7:2017–2036CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bardwell AJ, Flatauer LJ, Matsukuma K, Thorner J, Bardwell L (2001) A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J Biol Chem 276:10374–10386CrossRefPubMedGoogle Scholar
  3. Bayram O, Bayram OS, Ahmed YL, Maruyama J, Valerius O, Rizzoli SO, Ficner R, Irniger S, Braus GH (2012) The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism. PLoS Genet 8:e1002816CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhattacharyya RP, Remenyi A, Good MC, Bashor CJ, Falick AM, Lim WA (2006) The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311:822–826CrossRefPubMedGoogle Scholar
  5. Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530CrossRefPubMedGoogle Scholar
  6. Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisia. Biochim Biophys Acta-Mol Cell Res 1773:1311–1340CrossRefGoogle Scholar
  8. Chen Y, Zhu J, Ying SH, Feng MG (2014) Three mitogen-activated protein kinases required for cell wall integrity contribute greatly to biocontrol potential of a fungal entomopathogen. PLoS One 9:e87948CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen XX, Xu C, Qian Y, Liu R, Zhang QQ, Zeng GH, Zhang X, Zhao H, Fang WG (2016) MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii. Environ Microbiol 18:1048–1062CrossRefPubMedGoogle Scholar
  10. de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256CrossRefGoogle Scholar
  11. Defosse TA, Sharma A, Mondal AK, Dugé de Bernonville T, Latgé JP, Calderone R, Giglioli-Guivarc'h N, Courdavault V, Clastre M, Papon N (2015) Hybrid histidine kinases in pathogenic fungi. Mol Microbiol 95:914–924CrossRefPubMedGoogle Scholar
  12. Elion EA (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3:573–581CrossRefPubMedGoogle Scholar
  13. Franck WL, Gokce E, Randall SM, Oh Y, Eyre A, Muddiman DC, Dean RA (2015) Phosphoproteome analysis links protein phosphorylation to cellular remodeling and metabolic adaptation during Magnaporthe oryzae appressorium development. J Proteome Res 14:2408–2424CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fuchs BB, Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8:1616–1625CrossRefPubMedPubMedCentralGoogle Scholar
  15. Furukawa K, Hoshi Y, Maeda T, Nakajima T, Abe K (2005) Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol Microbiol 56:1246–1261CrossRefPubMedGoogle Scholar
  16. García R, Rodríguez-Peña JM, Bermejo C, Nombela C, Arroyo J (2009) The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae. J Biol Chem 284:10901–10911CrossRefPubMedPubMedCentralGoogle Scholar
  17. Good M, Tang G, Singleton J, Remenyi A, Lim WA (2009) The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell 136:1085–1097CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gu Q, Chen Y, Liu Y, Zhang CQ, Ma ZH (2015) The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. New Phytol 206:315–328CrossRefPubMedGoogle Scholar
  19. Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300PubMedPubMedCentralGoogle Scholar
  20. Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, Yoshimi A, Abe K, Kamei K, Gonoi T, Kawamoto S (2013) NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus. PLoS One 8:e80881CrossRefPubMedPubMedCentralGoogle Scholar
  21. Han KH, Prade RA (2002) Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol Microbiol 43:1065–1078CrossRefPubMedGoogle Scholar
  22. Heinisch JJ, Dupres V, Wilk S, Jendretzki A, Dufrêne YF (2010) Single-molecule atomic force microscopy reveals clustering of the yeast plasma-membrane sensor Wsc1. PLoS One 5:e11104CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45CrossRefPubMedGoogle Scholar
  24. Jin K, Ming Y, Xia YX (2012) MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum. Microbiol-SGM 158:2987–2996CrossRefGoogle Scholar
  25. Jin K, Han LR, Xia YX (2014) MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. J Invertebr Pathol 115:68–75CrossRefPubMedGoogle Scholar
  26. Kim YK, Kawano T, Li DX, Kolattukudy PE (2000) A mitogen-activated protein kinase kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides. Plant Cell 12:1331–1343CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kitade Y, Sumita T, Izumitsu K, Tanaka C (2015) MAPKK-encoding gene Ste7 in Bipolaris maydis is required for development and morphogenesis. Mycoscience 56:150–158CrossRefGoogle Scholar
  28. Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lin CH, Chung KR (2010) Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. Fungal Genet Biol 47:818–827CrossRefPubMedGoogle Scholar
  30. Liñeiro E, Chiva C, Cantoral JM, Sabido E, Fernández-Acero FJ (2016) Phosphoproteome analysis of B. cinerea in response to different plant-based elicitors. J Proteome 139:84–94CrossRefGoogle Scholar
  31. Liu WW, Leroux P, Fillinger S (2008) The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Fungal Genet Biol 45:1062–1074CrossRefPubMedGoogle Scholar
  32. Liu XZ, Xiang MC, Che YS (2009) The living strategy of nematophagous fungi. Mycoscience 50:20–25CrossRefGoogle Scholar
  33. Liu WW, Soulie MC, Perrino C, Fillinger S (2011) The osmosensing signal transduction pathway from Botrytis cinerea regulates cell wall integrity and MAP kinase pathways control melanin biosynthesis with influence of light. Fungal Genet Biol 48:377–387CrossRefPubMedGoogle Scholar
  34. Liu Q, Ying SH, Li JG, Tian CG, Feng MG (2013) Insight into the transcriptional regulation of Msn2 required for conidiation, multi-stress responses and virulence of two entomopathogenic fungi. Fungal Genet Biol 54:42–51CrossRefPubMedGoogle Scholar
  35. Liu J, Wang ZK, Sun HH, Ying SH, Feng MG (2017a) Characterization of the Hog1 MAPK pathway in the entomopathogenic fungus Beauveria bassiana. Environ Microbiol 19:1808–1821CrossRefPubMedGoogle Scholar
  36. Liu J, Sun HH, Ying SH, Feng MG (2017b) The Hog1-like MAPK Mpk3 collaborates with Hog1 in response to heat shock and functions in sustaining the biological control potential of a fungal insect pathogen. Appl Microbiol Biotechnol 101:6941–6949CrossRefPubMedGoogle Scholar
  37. Liu J, Tong SM, Qiu L, Ying SH, Feng MG (2017c) Two histidine kinases can sense different stress cues for activation of the MAPK Hog1 cascade in a fungal insect pathogen. Environ Microbiol 19:4091–4102CrossRefPubMedGoogle Scholar
  38. Liu J, Sun HH, Ying SH, Feng MG (2018) Characterization of three mitogen-activated protein kinase kinase-like proteins in Beauveria bassiana. Fungal Genet Biol 113:24–31CrossRefPubMedGoogle Scholar
  39. Luo XD, Keyhani NO, Yu XD, He ZJ, Luo ZB, Pei Y, Zhang YJ (2012) The MAP kinase Bbslt2 controls growth, conidiation, cell wall integrity, and virulence in the insect pathogenic fungus Beauveria bassiana. Fungal Genet Biol 49:544–555CrossRefPubMedGoogle Scholar
  40. Maleri S, Ge Q, Hackett EA, Wang Y, Dohlman HG, Errede B (2004) Persistent activation by constitutive Ste7 promotes Kss1-mediated invasive growth but fails to support Fus3-dependent mating in yeast. Mol Cell Biol 24:9221–9238CrossRefPubMedPubMedCentralGoogle Scholar
  41. Martin H, Flandez M, Nombela C, Molina M (2005) Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol 58:6–16CrossRefPubMedGoogle Scholar
  42. McCormick A, Jacobsen ID, Broniszewska M, Beck J, Heesemann J, Ebel F (2012) The two-component sensor kinase TcsC and its role in stress resistance of the human-pathogenic mold Aspergillus fumigatus. PLoS One 7:e38262CrossRefPubMedPubMedCentralGoogle Scholar
  43. Noguchi R, Banno S, Ichikawa R, Fukumori F, Ichiishi A, Kimura M, Yamaguchi I, Fujimura M (2007) Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa. Fungal Genet Biol 44:208–218CrossRefPubMedGoogle Scholar
  44. O’Rourke SM, Herskowitz I, O'Shea EK (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18:405–412CrossRefPubMedGoogle Scholar
  45. Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2001) Characterization of mutations in the twe-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag Sci 57:437–442CrossRefPubMedGoogle Scholar
  46. Ortiz-Urquiza A, Keyhani NO (2015) Stress response signaling and virulence: insights from entomopathogenic fungi. Curr Genet 61:239–249CrossRefPubMedGoogle Scholar
  47. Ozaki K, Tanaka K, Imamura H, Hihara T, Kameyama T, Nonaka H, Hirano H, Matsuura Y, Takai Y (1996) Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J 15:2196–2207Google Scholar
  48. Philip B, Levin DE (2001) Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21:271–280CrossRefPubMedPubMedCentralGoogle Scholar
  49. Posas F, Saito H (1997) Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276:1702–1705CrossRefPubMedGoogle Scholar
  50. Raitt DC, Posas F, Saito H (2000) Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J 19:4623–4631CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rampitsch C, Tinker NA, Subramaniam R, Barkow-Oesterreicher S, Laczko E (2012) Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions. Proteomics 12:1002–1005CrossRefPubMedGoogle Scholar
  52. Rispail N, Soanes DM, Ant C, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NAR, Kahmann R, Lebrun MH, Lenasi H, Perez-Martin J, Talbot NJ, Wendland J, Di Pietro A (2009) Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet Biol 46:287–298CrossRefPubMedGoogle Scholar
  53. Rodríguez-Peña JM, García R, Nombela C, Arroyo J (2010) The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signaling pathways interplay: a yeast dialogue between MAPK route. Yeast 27:495–502CrossRefPubMedGoogle Scholar
  54. Saito H, Tatebayashi K (2004) Regulation of the osmoregulatory HOG MAPK cascade in yeast. J Biochem 136:267–272CrossRefPubMedGoogle Scholar
  55. Sakaguchi A, Tsuji G, Kubo Y (2010) A yeast STE11 homologue CoMEKK1 is essential for pathogenesis-related morphogenesis in Colletotrichum orbiculare. Mol Plant-Microbe Interact 23:1563–1572CrossRefPubMedGoogle Scholar
  56. Schamber A, Leroch M, Diwo J, Mendgen K, Hahn M (2010) The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Mol Plant Pathol 11:105–119CrossRefPubMedGoogle Scholar
  57. Tatebayashi K, Yamamoto K, Tanaka K, Tomida T, Maruoka T, Kasukawa E, Saito H (2006) Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO J 25:3033–3044CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tong SM, Chen Y, Zhu J, Ying SH, Feng MG (2016) Subcellular localization of five singular WSC domain-containing proteins and their roles in Beauveria bassiana responses to stress cues and metal ions. Environ Microbiol Rep 8:295–304CrossRefPubMedGoogle Scholar
  59. Valiante V, Jain R, Heinekamp T, Brakhage AA (2009) The MpkA MAP kinase module regulates cell wall integrity signaling and pyomelanin formation in Aspergillus fumigatus. Fungal Genet Biol 46:909–918CrossRefPubMedGoogle Scholar
  60. van Drogen F, Stucke VM, Jorritsma G, Peter M (2001) MAP kinase dynamics in response to pheromones in budding yeast. Nat Cell Biol 3:1051–1059CrossRefPubMedGoogle Scholar
  61. Verna J, Lodder A, Lee K, Vagts A, Ballester R (1997) A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94:13804–13809CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wang CS, Feng MG (2014) Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests. Biol Control 68:128–135Google Scholar
  63. Wang CS, Wang SB (2017) Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol 62:73–90CrossRefPubMedGoogle Scholar
  64. Wang ZK, Wang J, Liu J, Ying SH, Peng XJ, Feng MG (2016) Proteomic and phosphoprotemic insights into Cdc14 signaling hub vital for asexual development and multistress responses of Beauveria bassiana. PLoS One 11:e0153007CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wang ZK, Cai Q, Tong SM, Ying SH, Feng MG (2018) C-terminal Ser/Thr residues are vital for the regulatory role of Ste7 in the asexual cycle and virulence of Beauveria bassiana. Appl Microbiol Biotechnol 102:6973–6986CrossRefPubMedGoogle Scholar
  66. Xiong Y, Coradetti ST, Li X, Gritsenko MA, Clauss T, Petyuk V, Camp D, Smith R, Cate JHD, Yang F, Glass NL (2014) The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation. Fungal Genet Biol 72:21–33CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yan LY, Yang QQ, Sundin GW, Li HY, Ma ZH (2010) The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genet Biol 47:753–760CrossRefPubMedGoogle Scholar
  68. Yang JK, Wang L, Ji XL, Feng Y, Li XM, Zou CG, Xu JP, Ren Y, Mi QL, Wu JL, Liu SQ, Liu Y, Huang XW, Wang HY, Niu XM, Li J, Liang LM, Luo YL, Ji KF, Zhou W, Yu ZF, Li GH, Liu YJ, Li L, Qiao M, Feng L, Zhang KQ (2011) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7:e1002179CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yang EC, Xu LL, Yang Y, Zhang XY, Xiang MC, Wang CS, An ZQ, Liu XZ (2012a) Origin and evolution of carnivorism in the Ascomycota (fungi). Proc Natl Acad Sci U S A 109:10960–10965CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yang QQ, Yan LY, Gu Q, Ma ZH (2012b) The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea. Appl Microbiol Biotechnol 96:481–492CrossRefPubMedGoogle Scholar
  71. Ying SH, Feng MG (2018) Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes. Virulence.
  72. Zeng FY, Gong XY, Hamid MI, Fu YP, Xie JT, Cheng JS, Li GQ, Jiang DH (2012) A fungal cell wall integrity-associated MAP kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism. Fungal Genet Biol 49:347–357CrossRefPubMedGoogle Scholar
  73. Zhang LB, Feng MG (2018) Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Appl Microbiol Biotechnol 102:4995–5004CrossRefPubMedGoogle Scholar
  74. Zhang Y, Lamm R, Pillonel C, Lam S, Xu JR (2002) Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl Environ Microbiol 68:532–538CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhang YJ, Zhao JH, Fang WG, Zhang JQ, Luo ZB, Zhang M, Fan YH, Pei Y (2009) Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects. Appl Environ Microbiol 75:3787–3795CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhang YJ, Zhang JQ, Jiang XD, Wang GJ, Luo ZB, Fan YH, Wu ZQ, Pei Y (2010) Requirement of a mitogen-activated protein kinase for appressorium formation and penetration of insect cuticle by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 76:2262–2270CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhao X, Kim Y, Park G, Xu JR (2005) A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17:1317–1329CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhen ZY, Xing XJ, Xie MH, Yang L, Yang XW, Zheng YP, Chen YL, Ma N, Li Q, Zhang KQ, Yang JK (2018) MAP kinase Slt2 orthologs play similar roles in conidiation, trap formation, and pathogenicity in two nematode-trapping fungi. Fungal Genet Biol 116:42–50CrossRefPubMedGoogle Scholar
  79. Zheng CF, Guan KL (1994) Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J 13:1123–1131CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Agricultural and Food ScienceZhejiang A&F UniversityLin’anChina
  2. 2.Institute of Microbiology, College of Life SciencesZhejiang UniversityHangzhouChina

Personalised recommendations