Applied Microbiology and Biotechnology

, Volume 103, Issue 2, pp 549–566 | Cite as

Phenotypic antibiotic susceptibility testing of pathogenic bacteria using photonic readout methods: recent achievements and impact

  • Astrid Tannert
  • Richard Grohs
  • Jürgen Popp
  • Ute NeugebauerEmail author


The development of antibiotic resistances in common pathogens is an increasing challenge for therapy of infections and especially severe complications like sepsis. To prevent administration of broad-spectrum and potentially non-effective antibiotics, the susceptibility spectrum of the pathogens underlying the infection has to be determined. Current phenotypic standard methods for antibiotic susceptibility testing (AST) require the isolation of pathogens from the patient and the subsequent culturing in the presence of antibiotics leading to results only after 24–72 h. Since the early initialization of an effective antibiotic therapy is crucial for positive treatment result in severe infections, faster methods of AST are urgently needed. A large number of different assay systems are currently tested for their practicability for fast detection of antibiotic resistance profiles. They can be divided into genotypic ones which detect the presence of certain genes or gene products associated with resistances and phenotypic assays which determine the effect of antibiotics on the pathogens. In this mini-review, we summarize current developments in fast phenotypic tests that use photonic approaches and critically discuss their status. We further outline steps that are required to bring these assays into clinical practice.


Spectroscopy Rapid susceptibility test Raman IR Scattering Microscopy Fluorescence 



The authors thank Dr. Michael Zürch, Charlotte Grohs and Christian Kirchberg for proofreading the manuscript.

Funding information

This work is financially supported by the Bundesministerium für Bildung und Forschung via the Integrated Research and Treatment Center “Center for Sepsis Control and Care” (CSCC, FKZ 01EO1502), the Deutsche Forschungsgemeinschaft via the Core Facility Jena Biophotonic and Imaging Laboratory (JBIL), as well as the European Union via HemoSpec (FP7-ICT-2013-CN-611682). Furthermore, the work was performed within the Research Campus InfectoGnostics (FKZ 13GW0096F), the Leibniz ScienceCampus InfectoOptics (SAS-2015-HKI-LWC), and the COST Action “Raman-based applications for clinical diagnostics—Raman4Clinics” (BM 1401).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.


  1. Adamus-Bialek W, Lechowicz L, Kubiak-Szeligowska AB, Wawszczak M, Kaminska E, Chrapek M (2017) A new look at the drug-resistance investigation of uropathogenic E. coli strains. Mol Biol Rep 44:191–202. Google Scholar
  2. Ambriz-Avina V, Contreras-Garduno JA, Pedraza-Reyes M (2014) Applications of flow cytometry to characterize bacterial physiological responses. Biomed Res Int 2014:1–14. Google Scholar
  3. Angeletti S (2017) Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J Microbiol Meth 138:20–29. Google Scholar
  4. Assmann C, Kirchhoff J, Beleites C, Hey J, Kostudis S, Pfister W, Schlattmann P, Popp J, Neugebauer U (2015) Identification of vancomycin interaction with Enterococcus faecalis within 30 min of interaction time using Raman spectroscopy. Anal Bioanal Chem 407:8343–8352. Google Scholar
  5. Athamneh AIM, Alajlouni RA, Wallace RS, Seleem MN, Senger RS (2014) Phenotypic profiling of antibiotic response signatures in Escherichia coli using Raman spectroscopy. Antimicrob Agents Chemother 58:1302–1314. Google Scholar
  6. Aunsbjerg SD, Andersen KR, Knochel S (2015) Real-time monitoring of fungal inhibition and morphological changes. J Microbiol Meth 119:196–202. Google Scholar
  7. Avesar J, Rosenfeld D, Truman-Rosentsvit M, Ben-Arye T, Geffen Y, Bercovici M, Levenberg S (2017) Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays. Proc Natl Acad Sci U S A 114:E5787–E5795. Google Scholar
  8. Baltekin O, Boucharin A, Tano E, Andersson DI, Elf J (2017) Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc Natl Acad Sci U S A 114:9170–9175. Google Scholar
  9. Barrett JF (2004) MRSA: status and prospects for therapy? An evaluation of key papers on the topic of MRSA and antibiotic resistance. Expert Opin Ther Targets 8:515–519. Google Scholar
  10. Berkman RM, Wyatt PJ, Phillips DT (1970) Rapid detection of penicillin sensitivity in Staphylococcus aureus. Nature 228:458–460. Google Scholar
  11. Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–1272. Google Scholar
  12. Bou G, Otero FM, Santiso R, Tamayo M, Fernandez MD, Tomas M, Gosalvez J, Fernandez JL (2012) Fast assessment of resistance to carbapenems and ciprofloxacin of clinical strains of Acinetobacter baumannii. J Clin Microbiol 50:3609–3613. Google Scholar
  13. Broeren MAC, Maas Y, Retera E, Arents NLA (2013) Antimicrobial susceptibility testing in 90 min by bacterial cell count monitoring. Clin Microbiol Infect 19:286–291. Google Scholar
  14. Bugrysheva JV, Lascols C, Sue D, Weigel LM (2016) Rapid antimicrobial susceptibility testing of Bacillus anthracis, Yersinia pestis, and Burkholderia pseudomallei by use of laser light scattering technology. J Clin Microbiol 54:1462–1471. Google Scholar
  15. Campbell J, McBeth C, Kalashnikov M, Boardman AK, Sharon A, Sauer-Budge AF (2016) Microfluidic advances in phenotypic antibiotic susceptibility testing. Biomed Microdevices 18:103. Google Scholar
  16. Carey PR, Heidari-Torkabadi H (2015) New techniques in antibiotic discovery and resistance: Raman spectroscopy. Ann N Y Acad Sci 1354:67–81. Google Scholar
  17. Chandra A, Singh N (2018) Bacterial growth sensing in microgels using pH-dependent fluorescence emission. Chem Commun 54:1643–1646. Google Scholar
  18. Choi J, Jeong HY, Lee GY, Han S, Han S, Jin B, Lim T, Kim S, Kim DY, Kim HC, Kim EC, Song SH, Kim TS, Kwon S (2017) Direct, rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis. Sci Rep 7:1148. Google Scholar
  19. Choi J, Jung YG, Kim J, Kim S, Jung Y, Na H, Kwon S (2013) Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip 13:280–287. Google Scholar
  20. Choi J, Yoo J, Lee M, Kim EG, Lee JS, Lee S, Joo S, Song SH, Kim EC, Lee JC, Kim HC, Jung YG, Kwon S (2014) A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci Transl Med 6:267ra174. Google Scholar
  21. Chung CY, Wang JC, Chuang HS (2016) Rapid bead-based antimicrobial susceptibility testing by optical diffusometry. PLoS One 11:e0148864. Google Scholar
  22. Cohen J, Vincent JL, Adhikari NKJ, Machado FR, Angus DC, Calandra T, Jaton K, Giulieri S, Delaloye J, Opal S, Tracey K, van der Poll T, Pelfrene E (2015) Sepsis: a roadmap for future research. Lancet Infect Dis 15:581–614. Google Scholar
  23. Cushnie TPT, O'Driscoll NH, Lamb AJ (2016) Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci 73:4471–4492. Google Scholar
  24. Dai J, Hamon M, Jambovane S (2016) Microfluidics for antibiotic susceptibility and toxicity testing. Bioengineering (Basel) 3:E25. Google Scholar
  25. Davenport M, Mach KE, Shortliffe LMD, Banaei N, Wang TH, Liao JC (2017) New and developing diagnostic technologies for urinary tract infections. Nat Rev Urol 14:296–310. Google Scholar
  26. Dekter HE, Orelio CC, Morsink MC, Tektas S, Vis B, te Witt R, van Leeuwen WB (2017) Antimicrobial susceptibility testing of gram-positive and -negative bacterial isolates directly from spiked blood culture media with Raman spectroscopy. Eur J Clin Microbiol Infect Dis 36:81–89. Google Scholar
  27. Dodds DR (2017) Antibiotic resistance: a current epilogue. Biochem Pharmacol 134:139–146. Google Scholar
  28. Etayash H, Khan MF, Kaur K, Thundat T (2016) Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat Commun 7.
  29. Feng J, Yee R, Zhang S, Tian LL, Shi WL, Zhang WH, Zhang Y (2018) A rapid growth-independent antibiotic resistance detection test by SYBR green/propidium iodide viability assay. Front Med 5.
  30. Feng S, Tseng D, Di Carlo D, Garner OB, Ozcan A (2016) High-throughput and automated diagnosis of antimicrobial resistance using a cost-effective cellphone-based micro-plate reader. Sci Rep 6.
  31. Fernandez RE, Rohani A, Farmehini V, Swami NS (2017) Review: microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta 966:11–33. Google Scholar
  32. Fredborg M, Andersen KR, Jorgensen E, Droce A, Olesen T, Jensen BB, Rosenvinge FS, Sondergaard TE (2013) Real-time optical antimicrobial susceptibility testing. J Clin Microbiol 51:2047–2053. Google Scholar
  33. Fredborg M, Rosenvinge FS, Spillum E, Kroghsbo S, Wang M, Sondergaard TE (2015) Rapid antimicrobial susceptibility testing of clinical isolates by digital time-lapse microscopy. Eur J Clin Microbiol 34:2385–2394. Google Scholar
  34. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He CW, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322:1857–1861. Google Scholar
  35. Galvan DD, Yu QM (2018) Surface-enhanced Raman scattering for rapid detection and characterization of antibiotic-resistant bacteria. Adv Healthc Mater 7.
  36. Goff DA, Jankowski C, Tenover FC (2012) Using rapid diagnostic tests to optimize antimicrobial selection in antimicrobial stewardship programs. Pharmacotherapy 32:677–687. Google Scholar
  37. Harz M, Rösch P, Popp J (2009) Vibrational spectroscopy-a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 75:104–113. Google Scholar
  38. Hayden RT, Clinton LK, Hewitt C, Koyamatsu T, Sun YL, Jamison G, Perkins R, Tang L, Pounds S, Bankowski MJ (2016) Rapid antimicrobial susceptibility testing using forward laser light scatter technology. J Clin Microbiol 54:2701–2706. Google Scholar
  39. He J, Mu X, Guo Z, Hao H, Zhang C, Zhao Z, Wang Q (2014) A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing. Eur J Clin Microbiol 33:2223–2230. Google Scholar
  40. Hong W, Karanja CW, Abutaleb NS, Younis W, Zhang X, Seleem MN, Cheng J-X (2018) Antibiotic susceptibility determination within one cell cycle at single-bacterium level by stimulated Raman metabolic imaging. Anal Chem 90:3737–3743. Google Scholar
  41. Huang TH, Ning XH, Wang XJ, Murthy N, Tzeng YL, Dickson RM (2015) Rapid cytometric antibiotic susceptibility testing utilizing adaptive multidimensional statistical metrics. Anal Chem 87:1941–1949. Google Scholar
  42. Huang TH, Tzeng YL, Dickson RM (2018) FAST: rapid determinations of antibiotic susceptibility phenotypes using label-free cytometry. Cytometry A 93:639–648. Google Scholar
  43. Idelevich EA, Hoy M, Gorlich D, Knaack D, Grunastel B, Peters G, Borowski M, Becker K (2017) Rapid phenotypic detection of microbial resistance in Gram-positive bacteria by a real-time laser scattering method. Front Microbiol 8.
  44. Idelevich EA, Hoy M, Knaack D, Gorlich D, Peters G, Borowski M, Becker K (2018) Direct determination of carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa from positive blood cultures using laser scattering technology. Int J Antimicrob Agents 51:221–226. Google Scholar
  45. Iriya R, Syal K, Jing WW, Mo MN, Yu H, Haydel SE, Wang SP, Tao NJ (2017) Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation. J Biomed Opt 22.
  46. Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49:1749–1755. Google Scholar
  47. Kasas S, Ruggeri FS, Benadiba C, Maillard C, Stupar P, Tournu H, Dietler G, Longo G (2015) Detecting nanoscale vibrations as signature of life. Proc Natl Acad Sci U S A 112:378–381. Google Scholar
  48. Kirchhoff J, Glaser U, Bohnert JA, Pletz MW, Popp J, Neugebauer U (2018) Simple ciprofloxacin resistance test and determination of minimal inhibitory concentration within 2 h using Raman spectroscopy. Anal Chem 90:1811–1818. Google Scholar
  49. Knaack D, Idelevich EA, Korber-Ingang B, Kresken M, Becker K (2018) Evaluation of a novel optical assay for rapid detection of methicillin-resistant Staphylococcus aureus in liquid culture. J Microbiol Methods 146:68–70. Google Scholar
  50. Kogermann K, Putrins M, Tenson T (2016) Single-cell level methods for studying the effect of antibiotics on bacteria during infection. Eur J Pharm Sci 95:2–16. Google Scholar
  51. Lamsa A, Liu WT, Dorrestein PC, Pogliano K (2012) The Bacillus subtilis cannibalism toxin SDP collapses the proton motive force and induces autolysis. Mol Microbiol 84:486–500. Google Scholar
  52. Larkin P (2011) Infrared and Raman spectroscopy : principles and spectral interpretation. Elsevier, Amsterdam ; BostonGoogle Scholar
  53. Lasch P, Stammler M, Zhang M, Baranska M, Bosch A, Majzner K (2018) FT-IR hyperspectral imaging and artificial neural network analysis for identification of pathogenic bacteria. Anal Chem 90:8896–8904. Google Scholar
  54. Le Page S, Raoult D, Rolain JM (2015) Real-time video imaging as a new and rapid tool for antibiotic susceptibility testing by the disc diffusion method: a paradigm for evaluating resistance to imipenem and identifying extended-spectrum beta-lactamases. Int J Antimicrob Agents 45:61–65. Google Scholar
  55. Lechowicz L, Urbaniak M, Adamus-Bialek W, Kaca W (2013) The use of infrared spectroscopy and artificial neural networks for detection of uropathogenic Escherichia coli strains' susceptibility to cephalothin. Acta Biochim Pol 60:713–718Google Scholar
  56. Leonard H, Halachmi S, Ben-Dov N, Nativ O, Segal E (2017) Unraveling antimicrobial susceptibility of bacterial networks on micropillar architectures using intrinsic phase-shift spectroscopy. ACS Nano 11:6167–6177. Google Scholar
  57. Li YY, Yang X, Zhao WA (2017) Emerging microtechnologies and automated systems for rapid bacterial identification and antibiotic susceptibility testing. SLAS Technol 22:585–608. Google Scholar
  58. Liu C-Y, Han Y-Y, Shih P-H, Lian W-N, Wang H-H, Lin C-H, Hsueh P-R, Wang J-K, Wang Y-L (2016) Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Sci Rep 6:1749. Google Scholar
  59. Liu ZZ, Banaei N, Ren KN (2017) Microfluidics for combating antimicrobial resistance. Trends Biotechnol 35:1129–1139. Google Scholar
  60. Longo G, Alonso-Sarduy L, Rio LM, Bizzini A, Trampuz A, Notz J, Dietler G, Kasas S (2013) Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol 8:522–526. Google Scholar
  61. Lorenz B, Wichmann C, Stockel S, Rosch P, Popp J (2017) Cultivation-free Raman spectroscopic investigations of bacteria. Trends Microbiol 25:413–424. Google Scholar
  62. Marschal (2017) Evaluation of the Accelerate Pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by Gram-negative pathogens. J Clin Microbiol.
  63. Martens E, Demain AL (2017) The antibiotic resistance crisis, with a focus on the United States. J Antibiot 70:520–526. Google Scholar
  64. McLaughlin HP, Gargis AS, Michel P, Sue D, Weigel LM (2017) Optical screening for rapid antimicrobial susceptibility testing and for observation of phenotypic diversity among strains of the genetically clonal species Bacillus anthracis. J Clin Microbiol 55:959–970. Google Scholar
  65. Montgomery S, Roman K, Ngyuen L, Cardenas AM, Knox J, Tomaras AP, Graf EH (2017) Prospective evaluation of light scatter technology paired with matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid diagnosis of urinary tract infections. J Clin Microbiol 55:1802–1811. Google Scholar
  66. Morens DM, Folkers GK, Fauci AS (2008) Emerging infections: a perpetual challenge. Lancet Infect Dis 8:710–719. Google Scholar
  67. Moritz TJ, Polage CR, Taylor DS, Krol DM, Lane SM, Chan JW (2010a) Evaluation of Escherichia coli cell response to antibiotic treatment by use of Raman spectroscopy with laser tweezers. J Clin Microbiol 48:4287–4290. Google Scholar
  68. Moritz TJ, Taylor DS, Polage CR, Krol DM, Lane SM, Chan JW (2010b) Effect of cefazolin treatment on the nonresonant Raman signatures of the metabolic state of individual Escherichia coli cells. Anal Chem 82:2703–2710. Google Scholar
  69. Mulroney KT, Hall JM, Huang X, Turnbull E, Bzdyl NM, Chakera A, Naseer U, Corea EM, Ellington MJ, Hopkins KL, Wester AL, Ekelund O, Woodford N, Inglis TJJ (2017) Rapid susceptibility profiling of carbapenem-resistant Klebsiella pneumoniae. Sci Rep 7:1903. Google Scholar
  70. Murray J, Evans P, Hukins DWL (1980) Light-scattering methods for antibiotic sensitivity tests. J Clin Pathol 33:995–1001. Google Scholar
  71. Neugebauer U, Rosch P, Popp J (2015) Raman spectroscopy towards clinical application: drug monitoring and pathogen identification. Int J Antimicrob Agents 46:S35–S39. Google Scholar
  72. Nguyen NTX, Sarter S, Nguyen NH, Daniel P (2017) Detection of molecular changes induced by antibiotics in Escherichia coli using vibrational spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 183:395–401. Google Scholar
  73. Nonejuie P, Burkart M, Pogliano K, Pogliano J (2013) Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc Natl Acad Sci U S A 110:16169–16174. Google Scholar
  74. Novelli-Rousseau A, Espagnon I, Filiputti D, Gal O, Douet A, Mallard F, Josso Q (2018) Culture-free antibiotic-susceptibility determination from single-bacterium Raman spectra. Sci Rep 8:3957. Google Scholar
  75. Otero F, Santiso R, Lopez I, Touzon I, Gosalvez J, Bou G, Fernandez JL (2018) Rapid determination of resistance to antibiotic inhibitors of protein synthesis in Staphylococcus aureus through in situ evaluation of DNase activity. Microb Drug Resist 24:739–746. Google Scholar
  76. Otero F, Santiso R, Tamayo M, Fernandez JL, Bou G, Lepe JA, McConnell MJ, Gosalvez J, Cisneros JM (2017a) Rapid detection of antibiotic resistance in Gram-negative bacteria through assessment of changes in cellular morphology. Microb Drug Resist 23:157–162. Google Scholar
  77. Otero F, Tamayo M, Santiso R, Gosalvez J, Bou G, Fernandez JL (2017b) Rapid assessment of resistance to antibiotic inhibitors of protein synthesis in the Gram-positive pathogens, Enterococcus faecalis and Streptococcus pneumoniae, based on evaluation of the lytic response. Microb Drug Resist 23:267–271. Google Scholar
  78. Pahlow S, Meisel S, Cialla-May D, Weber K, Rosch P, Popp J (2015) Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliv Rev 89:105–120. Google Scholar
  79. Pancholi P, Carroll KC, Buchan BW, Chan RC, Dhiman N, Ford B, Granato PA, Harrington AT, Hernandez DR, Humphries RM, Jindra MR, Ledeboer NA, Miller SA, Mochon AB, Morgan MA, Patel R, Schreckenberger PC, Stamper PD, Simner PJ, Tucci NE, Zimmerman C, Wolk DM (2018) Multicenter evaluation of the Accelerate PhenoTest BC Kit for rapid identification and phenotypic antimicrobial susceptibility testing using morphokinetic cellular analysis. J Clin Microbiol 56.
  80. Pantel A, Monier J, Lavigne JP (2018) Performance of the Accelerate Pheno system for identification and antimicrobial susceptibility testing of a panel of multidrug-resistant Gram-negative bacilli directly from positive blood cultures. J Antimicrob Chemother 73:1546–1552. Google Scholar
  81. Pilat Z, Bernatova S, Jezek J, Kirchhoff J, Tannert A, Neugebauer U, Samek O, Zemanek P (2018a) Microfluidic cultivation and laser tweezers Raman spectroscopy of E. coli under antibiotic stress. Sensors (Basel) 18.
  82. Pilat Z, Bernatova S, Jezek J, Kirchhoff J, Tannert A, Neugebauer U, Samek O, Zemanek P (2018b) Microfluidic cultivation and laser tweezers Raman spectroscopy of E. coli under antibiotic stress. Sensors-Basel 18.
  83. Popp J, Tuchin VV, Chiou A, Heinemann SH (2011) Handbook of biophotonics: volume 1: basics and techniques, vol 1. Wiley-VCH, WeinheimGoogle Scholar
  84. Price CS, Kon SE, Metzger S (2014) Rapid antibiotic susceptibility phenotypic characterization of Staphylococcus aureus using automated microscopy of small numbers of cells. J Microbiol Meth 98:50–58. Google Scholar
  85. Quach DT, Sakoulas G, Nizet V, Pogliano J, Pogliano K (2016) Bacterial cytological profiling (BCP) as a rapid and accurate antimicrobial susceptibility testing method for Staphylococcus aureus. EBioMedicine 4:95–103. Google Scholar
  86. Saint-Ruf C, Crussard S, Franceschi C, Orenga S, Ouattara J, Ramjeet M, Surre J, Matic I (2016) Antibiotic susceptibility testing of the Gram-negative bacteria based on flow cytometry. Front Microbiol 7.
  87. Salman A, Sharaha U, Rodriguez-Diaz E, Shufan E, Riesenberg K, Bigio IJ, Huleihel M (2017) Detection of antibiotic resistant Escherichia coli bacteria using infrared microscopy and advanced multivariate analysis. Analyst 142:2136–2144. Google Scholar
  88. Sandalakis V, Goniotakis I, Vranakis I, Chochlakis D, Psaroulaki A (2017) Use of MALDI-TOF mass spectrometry in the battle against bacterial infectious diseases: recent achievements and future perspectives. Expert Rev Proteomic 14:253–267. Google Scholar
  89. Schröder U-C, Beleites C, Assmann C, Glaser U, Hübner U, Pfister W, Fritzsche W, Popp J, Neugebauer U (2015a) Detection of vancomycin resistances in enterococci within 3 ½ hours. Sci Rep 5:8217. Google Scholar
  90. Schröder U-C, Bokeloh F, O'Sullivan M, Glaser U, Wolf K, Pfister W, Popp J, Ducrée J, Neugebauer U (2015b) Rapid, culture-independent, optical diagnostics of centrifugally captured bacteria from urine samples. Biomicrofluidics 9:044118. Google Scholar
  91. Schröder U-C, Kirchhoff J, Hübner U, Mayer G, Glaser U, Henkel T, Pfister W, Fritzsche W, Popp J, Neugebauer U (2017) On-chip spectroscopic assessment of microbial susceptibility to antibiotics within 3.5 hours. J Biophotonics 10:1547–1557. Google Scholar
  92. Schröder U-C, Ramoji A, Glaser U, Sachse S, Leiterer C, Csaki A, Hübner U, Fritzsche W, Pfister W, Bauer M, Popp J, Neugebauer U (2013) Combined dielectrophoresis-Raman setup for the classification of pathogens recovered from the urinary tract. Anal Chem 85:10717–10724. Google Scholar
  93. Sharaha U, Rodriguez-Diaz E, Riesenberg K, Bigio IJ, Huleihel M, Salman A (2017) Using infrared spectroscopy and multivariate analysis to detect antibiotics’ resistant Escherichia coli bacteria. Anal Chem 89:8782–8790. Google Scholar
  94. Stiles PL, Dieringer JA, Shah NC, Van Duyne RR (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626. Google Scholar
  95. Stöckel S, Kirchhoff J, Neugebauer U, Rosch P, Popp J (2016) The application of Raman spectroscopy for the detection and identification of microorganisms. J Raman Spectrosc 47:89–109. Google Scholar
  96. Stull VR (1973) Clinical laboratory use of differential light-scattering. I. Antibiotic susceptibility testing. Clin Chem 19:883–890Google Scholar
  97. Stupar P, Opota O, Longo G, Prod’hom G, Dietler G, Greub G, Kasas S (2017) Nanomechanical sensor applied to blood culture pellets: a fast approach to determine the antibiotic susceptibility against agents of bloodstream infections. Clin Microbiol Infect 23:400–405. Google Scholar
  98. Syal K, Iriya R, Yang YZ, Yu H, Wang SP, Haydel SE, Chen HY, Tao NJ (2016) Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale. ACS Nano 10:845–852. Google Scholar
  99. Syal K, Mo MN, Yu H, Iriya R, Jing WW, Sui G, Wang SP, Grys TE, Haydel SE, Tao NJ (2017a) Current and emerging techniques for antibiotic susceptibility tests. Theranostics 7:1795–1805. Google Scholar
  100. Syal K, Shen SM, Yang YZ, Wang SP, Haydel SE, Tao NJ (2017b) Rapid antibiotic susceptibility testing of uropathogenic E. coli by tracking submicron scale motion of single bacterial cells. ACS Sens 2:1231–1239. Google Scholar
  101. Tao Y, Wang Y, Huang S, Zhu P, Huang WE, Ling J, Xu J (2017) Metabolic-activity-based assessment of antimicrobial effects by D2O-labeled single-cell Raman microspectroscopy. Anal Chem 89:4108–4115. Google Scholar
  102. van Belkum A, Dunne WM (2013) Next-generation antimicrobial susceptibility testing. J Clin Microbiol 51:2018–2024. Google Scholar
  103. van Belkum A, Durand G, Peyret M, Chatellier S, Zambardi G, Schrenzel J, Shortridge D, Engelhardt A, Dunne WM (2013) Rapid clinical bacteriology and its future impact. Ann Lab Med 33:14–27. Google Scholar
  104. Veses-Garcia M, Antypas H, Loffler S, Brauner A, Andersson-Svahn H, Richter-Dahlfors A (2018) Rapid phenotypic antibiotic susceptibility testing of uropathogens using optical signal analysis on the nanowell slide. Front Microbiol 9.
  105. Wu LN, Wang S, Song YY, Wang X, Yan XM (2016) Applications and challenges for single-bacteria analysis by flow cytometry. Sci China Chem 59:30–39. Google Scholar
  106. Yu H, Jing WW, Iriya R, Yang YZ, Syal K, Mo MN, Grys TE, Haydel SE, Wang SP, Tao NJ (2018) Phenotypic antimicrobial susceptibility testing with deep learning video microscopy. Anal Chem 90:6314–6322. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leibniz Institute of Photonic TechnologyJenaGermany
  2. 2.Jena Biophotonics and Imaging LaboratoryJenaGermany
  3. 3.Center for Sepsis Control and CareJena University HospitalJenaGermany
  4. 4.Institute of Physical ChemistryFriedrich Schiller University JenaJenaGermany
  5. 5.InfectoGnostics Research Campus JenaJenaGermany

Personalised recommendations