Applied Microbiology and Biotechnology

, Volume 103, Issue 2, pp 929–939 | Cite as

Triptolide modulates tumour-colonisation and anti-tumour effect of attenuated Salmonella encoding DNase I

  • Tingtao ChenEmail author
  • Xiaoxiao Zhao
  • Yimeng Ren
  • Yuqing Wang
  • Xianyao Tang
  • Puyuan Tian
  • Huan Wang
  • Hongbo XinEmail author
Applied microbial and cell physiology


The strong human immunity and the associated toxicities of attenuated Salmonella severely limit the clinical use of Salmonella in tumour suppression. In the present study, we constructed an engineered VNP20009-DNase I strain and evaluated the synergistic effects of triptolide (TPL) and VNP20009-DNase I against melanoma in mice. Our results indicated that TPL could significantly inhibit the cell growth and cell migration and significantly enhanced the apoptosis rate of B16F10 cells in vitro. The in vivo results indicated that TPL markedly improved tumour colonisation of VNP20009-DNase I and led to a larger necrotic area in the melanoma. Moreover, the combination therapy significantly suppressed tumour volume and prolonged the life span of mice (P < 0.05) by upregulating the expression of Bcl-2/Bax and Caspase-3 and by downregulating the TLR4/NF-κB signalling, the expression of p-AKT/AKT and the production of proinflammatory factors. Therefore, the sound synergistic anti-tumour effects of TPL and VNP20009-DNase I indicate that the unconventional application of TPL and biological agents, approved by the China Food and Drug Administration (CFDA), can result in improved anti-cancer therapeutic outcomes.


Triptolide VNP20009 DNase I Salmonella Cancer therapy 



This work was supported by grants from the National Natural Science Foundation of China (No. 31560264, 81503364, 91639106, and 81873659), Excellent Youth Foundation of Jiangxi Scientific Committee (No. 20171BCB23028), the grant for Jiangxi Provincial Collaborative Innovation Center of Biopharmaceutics and Biotechnology (No. 2015202004), Key R & D plan of JiangXi Science and Technology Agency (No. 20181BBG70028), JiangXi Provincial Science and technology innovation team(20181BCB24003) and Science and technology plan of Jianxi Health Planning Committee (No. 20175526).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

253_2018_9481_MOESM1_ESM.pdf (421 kb)
ESM 1 (PDF 421 kb)


  1. Alimoradi H, Matikonda SS, Gamble AB, Giles GI, Greish K (2016) Hypoxia responsive drug delivery systems in tumor therapy. Curr Pharm Desi 22:2808–2820. CrossRefGoogle Scholar
  2. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87(2):171. CrossRefGoogle Scholar
  3. Baban CK, Cronin M, O'Hanlon D, O'Sullivan GC, Tangney M (2010) Bacteria as vectors for gene therapy of cancer. Bioeng Bugs 1(6):385–394. CrossRefGoogle Scholar
  4. Bolhassani A, Zahedifard F (2012) Therapeutic live vaccines as a potential anticancer strategy. Int J Cancer 131:1733–1743. CrossRefGoogle Scholar
  5. Chen J, Qiao Y, Bo T, Guo C, Liu X, Yang B, Jing W, Zhang X, Cheng X, Pan D (2017) Modulation of Salmonella tumor-colonization and intratumoral anti-angiogenesis by triptolide and its mechanism. Theranostics 7(8):2250–2260. CrossRefGoogle Scholar
  6. Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P, Byzova TV (2005) Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med 11(11):1188–1196. CrossRefGoogle Scholar
  7. Chen J, Yang B, Cheng X, Qiao Y, Tang B, Chen G, Wei J, Liu X, Cheng W, Du P, Huang X, Jiang W, Hu Q, Hu Y, Li J, Hua ZC (2012) Salmonella-mediated tumor-targeting TRAIL gene therapy significantly suppresses melanoma growth in mouse model. Cancer Sci 103(2):325–333. CrossRefGoogle Scholar
  8. Felgner S, Kocijancic D, Frahm M, Heise U, Rohde M, Zimmermann K, Falk C, Erhardt M, Weiss S (2018) Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. Oncoimmunol 7:e1382791. CrossRefGoogle Scholar
  9. Fox M, Lemmon M, Mauchline M, Davis T, Giaccia A, Minton N, Brown J (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther 3(2):173–178Google Scholar
  10. Gujrati V, Kim S, Kim SH, Min JJ, Choy HE, Kim SC, Jon S (2014) Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 8(2):1525–1537. CrossRefGoogle Scholar
  11. Hao Q, Cho WC (2014) Battle against cancer: an everlasting saga of p53. Int J Mol Sci 15(12):22109–22127. CrossRefGoogle Scholar
  12. Hoffman RM (2015) Back to the future: are tumor-targeting bacteria the next-generation cancer therapy? Methods Mol Biol 1317:239–260. CrossRefGoogle Scholar
  13. Hu H, Huang G, Wang H, Li X, Wang X, Feng Y, Tan B, Chen T (2017) Inhibition effect of triptolide on human epithelial ovarian cancer via adjusting cellular immunity and angiogenesis. Oncol Rep 39:1191–1196. Google Scholar
  14. Hu H, Luo L, Liu F, Zou D, Zhu S, Tan B, Chen T (2016) Anti-cancer and sensibilisation effect of triptolide on human epithelial ovarian cancer. J Cancer 7(14):2093–2099. CrossRefGoogle Scholar
  15. Jain RK, Forbes NS (2001) Can engineered bacteria help control cancer? Proc Natl Acad Sci U S A 98(26):14748–14750. CrossRefGoogle Scholar
  16. Jia LJ, Wei DP, Sun QM, Huang Y, Wu Q, Hua ZC (2007) Oral delivery of tumor-targeting Salmonella for cancer therapy in murine tumor models. Cancer Sci 98(7):1107–1112. CrossRefGoogle Scholar
  17. Johannessen M, Askarian F, Sangvik M, Sollid JE (2013) Bacterial interference with canonical NFκB signalling. Microbiol 159(10):2001–2013CrossRefGoogle Scholar
  18. Kim J-E, Phan TX, Nguyen VH, Dinh-Vu H-V, Zheng JH, Yun M, Park S-G, Hong Y, Choy HE, Szardenings M (2015) Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1β. Theranostics 5(12):1328–1342. CrossRefGoogle Scholar
  19. Lee CH (2012) Engineering bacteria toward tumor targeting for cancer treatment: current state and perspectives. Appl Microbiol Biotechnol 93:517–523. CrossRefGoogle Scholar
  20. Leschner S, Westphal K, Dietrich N, Viegas N, Jablonska J, Lyszkiewicz M, Lienenklaus S, Falk W, Gekara N, Loessner H (2009) Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α. PLoS One 4(8):e6692. CrossRefGoogle Scholar
  21. Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, Ash O, Carmichael E, Chakraborty A, Fischer J (1999) Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat Biotechnol 17(1):37–41. CrossRefGoogle Scholar
  22. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619. CrossRefGoogle Scholar
  23. Pasetti MF, Anderson RJ, Noriega FR, Levine MM, Sztein MB (1999) Attenuated ΔguaBA Salmonella typhi vaccine strain CVD 915 as a live vector utilizing prokaryotic or eukaryotic expression systems to deliver foreign antigens and elicit immune responses. Clin Immunol 92(1):76–89. CrossRefGoogle Scholar
  24. Patyar S, Joshi R, Byrav DSP, Prakash A, Medhi B, Das B (2010) Review. Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci 17:21. CrossRefGoogle Scholar
  25. Pawelek JM, Low KB, Bermudes D (2003) Bacteria as tumour-targeting vectors. Lancet Oncol 4(9):548–556. CrossRefGoogle Scholar
  26. Phan TX, Nguyen VH, MTQ D, Hong Y, Choy HE, Min JJ (2015) Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiol Immunol 59(11):664–675. CrossRefGoogle Scholar
  27. Raes J (2016) Microbiome-based companion diagnostics: no longer science fiction? Gut 65:896–897. CrossRefGoogle Scholar
  28. Robbins PD, Ghivizzani SC (1998) Viral vectors for gene therapy. Pharmacol Ther 80(1):35–47CrossRefGoogle Scholar
  29. Schlabritz-Loutsevitch N, Gygax SE, Dick E, Smith WL, Snider C, Hubbard G, Ventolini G (2016) Vaginal dysbiosis from an evolutionary perspective. Sci Rep 6:26817. CrossRefGoogle Scholar
  30. Selman M, Ou P, Rousso C, Bergeron A, Krishnan R, Pikor L, Chen A, Keller B, Ilkow C, Bell J, Diallo J (2018) Dimethyl fumarate potentiates oncolytic virotherapy through NF-κB inhibition. Sci Transl Med 10:eaao1613. CrossRefGoogle Scholar
  31. Taniguchi SI, Fujimori M, Sasaki T, Tsutsui H, Shimatani Y, Seki K, Amano J (2010) Targeting solid tumors with non-pathogenic obligate anaerobic bacteria. Cancer Sci 101(9):1925–1932. CrossRefGoogle Scholar
  32. Thomas H (2016) Gut microbiota: microbiota promote gut healing. Nat Rev Gastroenterol Hepatol 13:189. CrossRefGoogle Scholar
  33. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20(1):142–152. CrossRefGoogle Scholar
  34. Vassaux G, Nitcheu J, Jezzard S, Lemoine NR (2006) Bacterial gene therapy strategies. J Pathol 208(2):290–298CrossRefGoogle Scholar
  35. Weiss S (2003) Transfer of eukaryotic expression plasmids to mammalian hosts by attenuated Salmonella spp. Int J Med Microbiol 293(1):95–106. CrossRefGoogle Scholar
  36. Xiong J, Sun WJ, Wang WF, Liao ZK, Zhou FX, Kong HY, Xu Y, Xie CH, Zhou YF (2012) Novel, chimeric, cancer-specific, and radiation-inducible gene promoters for suicide gene therapy of cancer. Cancer 118(2):536–548. CrossRefGoogle Scholar
  37. Yamamura K, Baba Y, Nakagawa S, Mima K, Miyake K, Nakamura K, Sawayama H, Kinoshita K, Ishimoto T, Iwatsuki M (2016) Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res 22:5574–5581. CrossRefGoogle Scholar
  38. Zeuthen LH, Christensen HR, Frøkiær H (2006) Lactic acid bacteria inducing a weak interleukin-12 and tumor necrosis factor alpha response in human dendritic cells inhibit strongly stimulating lactic acid bacteria but act synergistically with gram-negative bacteria. Clin Vaccine Immunol 13(3):365–375. CrossRefGoogle Scholar
  39. Zhang HY, Man JH, Liang B, Zhou T, Wang CH, Li T, Li HY, Li WH, Jin BF, Zhang PJ, Zhao J, Pan X, He K, Gong WL, Zhang XM, Li AL (2010) Tumor-targeted delivery of biologically active TRAIL protein. Cancer Gene Ther 17(5):334–343. CrossRefGoogle Scholar
  40. Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A 102(3):755–760. CrossRefGoogle Scholar
  41. Zheng JH, Nguyen VH, Jiang SN, Park SH, Tan W, Hong SH, Shin MG, Chung IJ, Hong Y, Bom HS (2017) Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med 9:eaak9537. CrossRefGoogle Scholar
  42. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21:786–796. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Translational MedicineNanchang UniversityNanchangPeople’s Republic of China

Personalised recommendations