Advertisement

The prevalence rate of periodontal pathogens and its association with oral squamous cell carcinoma

  • Chunrong Chang
  • Fengxue Geng
  • Xiaoting Shi
  • Yuchao Li
  • Xue Zhang
  • Xida Zhao
  • Yaping Pan
Applied microbial and cell physiology

Abstract

Mounting evidence suggests a causal relationship between specific bacterial infections or microbial compositions and the development of certain malignant neoplasms. In this study, we performed research through 16S rRNA amplicon sequencing, qPCR and fluorescence in situ hybridization to certify the relationship between periodontal pathogens and oral squamous cell carcinoma (OSCC). Subgingival plaque, cancer and paracancerous tissues from 6 patients with OSCC were selected for mapping bacterial profiles by 16S rRNA amplicon sequencing. The research showed that periodontal pathogens were enriched in cancer and paracancerous tissues, while the bacterial profiles were similar between the cancer tissues and subgingival plaque. Furthermore, the relative abundance of Porphyromonas gingivalis, Fusobacterium nucleatum and Streptococcus sanguinis was detected in 61 cancer tissues, paracancerous tissues and subgingival plaque samples and in 30 normal tissues by qPCR. The results revealed that P. gingivalis and F. nucleatum existed at higher levels in cancer tissue than in normal tissues and were correlated with subgingival plaques. P. gingivalis was detected using a special oligonucleotide probe in 60.7% of OSCC tissues, 32.8% of paracancerous tissues and 13.3% of normal tissues. Relevance analysis showed that P. gingivalis infection was positively associated with late clinical staging, low differentiation and lymph node metastasis in patients with OSCC, which was accompanied by deeper periodontal pockets, severe clinical attachment loss and loss of teeth. This study revealed that there might be a close relationship between oral microorganisms, particularly periodontal pathogens, and OSCC, which might enrich the pathogenesis of oral squamous carcinoma.

Keywords

P. gingivalis F. nucleatum OSCC Periodontal pathogen Differentiation Metastasis 

Notes

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 81470745 and No.81670997).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study. This experiment was approved by the ethics committee of the Affiliated Stomatological Hospital of China Medical University, and the ethical approval number was G2014006.

Supplementary material

253_2018_9475_MOESM1_ESM.pdf (362 kb)
ESM 1 (PDF 361 kb)

References

  1. Alfano MC, Horowitz AM (2001) Professional and community efforts to prevent morbidity and mortality from oral cancer. J Am Dent Assoc 132(Suppl):24S–29SCrossRefGoogle Scholar
  2. Bagan J, Sarrion G, Jimenez Y (2010) Oral cancer: clinical features. Oral Oncol 46(6):414–417.  https://doi.org/10.1016/j.oraloncology.2010.03.009 CrossRefPubMedGoogle Scholar
  3. Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein AM, Nussbaum G, Elkin M (2015) Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 6(26):22613–22623.  https://doi.org/10.18632/Oncotarget4209 CrossRefPubMedGoogle Scholar
  4. Boonanantanasarn K, Gill AL, Yap Y, Jayaprakash V, Sullivan MA, Gill SR (2012) Enterococcus faecalis enhances cell proliferation through hydrogen peroxide-mediated epidermal growth factor receptor activation. Infect Immun 80(10):3545–3558.  https://doi.org/10.1128/IAI.00479-12 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bouvet P, Ferraris L, Dauphin B, Popoff MR, Butel MJ, Aires J (2014) 16S rRNA gene sequencing, multilocus sequence analysis, and mass spectrometry identification of the proposed new species “Clostridium neonatale”. J Clin Microbiol 52(12):4129–4136.  https://doi.org/10.1128/JCM.00477-14 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chocolatewala N, Chaturvedi P, Desale R (2010) The role of bacteria in oral cancer. Indian J Med Paediatr Oncol 31(4):126–131.  https://doi.org/10.4103/0971-5851.76195 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J (2014) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2(1):6.  https://doi.org/10.1186/2049-2618-2-6 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Geng F, Liu J, Guo Y, Li C, Wang H, Wang H, Zhao H, Pan Y (2017) Persistent exposure to Porphyromonas gingivalis promotes proliferative and invasion capabilities, and tumorigenic properties of human immortalized oral epithelial cells. Front Cell Infect Microbiol 7:57.  https://doi.org/10.3389/fcimb.2017.00057 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gholizadeh P, Eslami H, Yousefi M, Asgharzadeh M, Aghazadeh M, Kafil HS (2016) Role of oral microbiome on oral cancers, a review. Biomed Pharmacother 84:552–558.  https://doi.org/10.1016/j.biopha.2016.09.082 CrossRefPubMedGoogle Scholar
  10. Gonda TA, Tu S, Wang TC (2009) Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle 8(13):2005–2013.  https://doi.org/10.4161/cc.8.13.8985 CrossRefPubMedGoogle Scholar
  11. Ha NH, Woo BH, Kim da J, Ha ES, Choi JI, Kim SJ, Park BS, Lee JH, Park HR (2015) Prolonged and repetitive exposure to Porphyromonas gingivalis increases aggressiveness of oral cancer cells by promoting acquisition of cancer stem cell properties. Tumour Biol 36(12):9947–9960.  https://doi.org/10.1007/s13277-015-3764-9 CrossRefPubMedGoogle Scholar
  12. Hashibe M, Brennan P, Chuang SC, Boccia S, Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW, Fabianova E, Fernandez L, Wunsch-Filho V, Franceschi S, Hayes RB, Herrero R, Kelsey K, Koifman S, La Vecchia C, Lazarus P, Levi F, Lence JJ, Mates D, Matos E, Menezes A, McClean MD, Muscat J, Eluf-Neto J, Olshan AF, Purdue M, Rudnai P, Schwartz SM, Smith E, Sturgis EM, Szeszenia-Dabrowska N, Talamini R, Wei Q, Winn DM, Shangina O, Pilarska A, Zhang ZF, Ferro G, Berthiller J, Boffetta P (2009) Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. CancerEpidemiol Biomarkers Prev 18(2):541–550.  https://doi.org/10.1158/1055-9965.EPI-08-0347 CrossRefGoogle Scholar
  13. Hendrickson EL, Xia Q, Wang T, Lamont RJ, Hackett M (2009) Pathway analysis for intracellular Porphyromonas gingivalis using a strain ATCC 33277 specific database. BMC Microbiol 9:185.  https://doi.org/10.1186/1471-2180-9-185 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hu X, Zhang Q, Hua H, Chen F (2016) Changes in the salivary microbiota of oral leukoplakia and oral cancer. Oral Oncol 56:e6–e8.  https://doi.org/10.1016/j.oraloncology.2016.03.007 CrossRefPubMedGoogle Scholar
  15. Huang SH, O'Sullivan B (2017) Overview of the 8th Edition TNM Classification for Head and Neck Cancer. Curr Treat Options in Oncol 18(7):40.  https://doi.org/10.1007/s11864-017-0484-y CrossRefGoogle Scholar
  16. Inaba H, Sugita H, Kuboniwa M, Iwai S, Hamada M, Noda T, Morisaki I, Lamont RJ, Amano A (2014) Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol 16(1):131–145.  https://doi.org/10.1111/cmi.12211 CrossRefPubMedGoogle Scholar
  17. Katz J, Onate MD, Pauley KM, Bhattacharyya I, Cha S (2011) Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. Int J Oral Sci 3(4):209–215.  https://doi.org/10.4248/IJOS11075 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kido J, Bando Y, Bando M, Kajiura Y, Hiroshima Y, Inagaki Y, Murata H, Ikuta T, Kido R, Naruishi K, Funaki M, Nagata T (2015) YKL-40 level in gingival crevicular fluid from patients with periodontitis and type 2 diabetes. Oral Dis 21(5):667–673.  https://doi.org/10.1111/odi.12334 CrossRefPubMedGoogle Scholar
  19. Lamason RL, Welch MD (2016) Actin-based motility and cell-to-cell spread of bacterial pathogens. Curr Opin Microbiol 35:48–57.  https://doi.org/10.1016/j.mib.2016.11.007 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185–149119.  https://doi.org/10.1155/2014/149185 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lee K, Roberts JS, Choi CH, Atanasova KR, Yilmaz O (2018) Porphyromonas gingivalis traffics into endoplasmic reticulum-rich-autophagosomes for successful survival in human gingival epithelial cells. Virulence 9(1):845–859.  https://doi.org/10.1080/21505594.2018.1454171 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li Y, Guo H, Wang X, Lu Y, Yang C, Yang P (2015) Coinfection with Fusobacterium nucleatum can enhance the attachment and invasion of Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans to human gingival epithelial cells. Arch Oral Biol 60(9):1387–1393.  https://doi.org/10.1016/j.archoralbio.2015.06.017 CrossRefPubMedGoogle Scholar
  23. Ma S, Li H, Yan C, Wang D, Li H, Xia X, Dong X, Zhao Y, Sun T, Hu P, Guan W (2014) Antagonistic effect of protein extracts from Streptococcus sanguinis on pathogenic bacteria and fungi of the oral cavity. Exp Ther Med 7(6):1486–1494.  https://doi.org/10.3892/etm.2014.1618 CrossRefPubMedPubMedCentralGoogle Scholar
  24. MacIntyre DA, Chandiramani M, Lee YS, Kindinger L, Smith A, Angelopoulos N, Lehne B, Arulkumaran S, Brown R, Teoh TG, Holmes E, Nicoholson JK, Marchesi JR, Bennett PR (2015) The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep 5:8988.  https://doi.org/10.1038/srep08988 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mager DL, Haffajee AD, Devlin PM, Norris CM, Posner MR, Goodson JM (2005) The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med 3(27):27.  https://doi.org/10.1186/1479-5876-3-27 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mai X, Genco RJ, LaMonte MJ, Hovey KM, Freudenheim JL, Andrews CA, Wactawski-Wende J (2016) Periodontal pathogens and risk of incident cancer in postmenopausal females: the Buffalo OsteoPerio Study. J Periodontol 87(3):257–267.  https://doi.org/10.1902/jop.2015.150433 CrossRefPubMedGoogle Scholar
  27. Makitie AA, Pintor Dos Reis P, Arora S, Macmillan C, Warner GC, Sukhai M, Dardick I, Perez-Ordonez B, Wells R, Brown D, Gilbert R, Freeman J, Gullane P, Irish J, Kamel-Reid S (2005) Molecular characterization of salivary gland malignancy using the Smgb-Tag transgenic mouse model. Lab Investig 85(8):947–961.  https://doi.org/10.1038/labinvest.3700288 CrossRefPubMedGoogle Scholar
  28. Mani V, Weber TE, Baumgard LH, Gabler NK (2012) Growth and development symposium: endotoxin, inflammation. and intestinal function in livestock J Anim Sci 90(5):1452–1465.  https://doi.org/10.2527/jas.2011-4627 CrossRefPubMedGoogle Scholar
  29. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444.  https://doi.org/10.1038/nature07205 CrossRefGoogle Scholar
  30. Moffatt CE, Lamont RJ (2011) Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells. Infect Immun 79(7):2632–2637. https://doi.org/10.1128/IAI.00082-11IAI.00082-11[pii]Google Scholar
  31. Moraes RC, Dias FL, Figueredo CM, Fischer RG (2016) Association between chronic periodontitis and oral/oropharyngeal cancer. Braz Dent J 27(3):261–266.  https://doi.org/10.1590/0103-6440201600754 CrossRefPubMedGoogle Scholar
  32. Nagy KN, Sonkodi I, Szoke I, Nagy E, Newman HN (1998) The microflora associated with human oral carcinomas. Oral Oncol 34(4):304–308CrossRefGoogle Scholar
  33. Pan C, Xu X, Tan L, Lin L, Pan Y (2014) The effects of Porphyromonas gingivalis on the cell cycle progression of human gingival epithelial cells. Oral Dis 20(1):100–108.  https://doi.org/10.1111/odi.12081 CrossRefPubMedGoogle Scholar
  34. Reis PP, Tomenson M, Cervigne NK, Machado J, Jurisica I, Pintilie M, Sukhai MA, Perez-Ordonez B, Grenman R, Gilbert RW, Gullane PJ, Irish JC, Kamel-Reid S (2010) Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma. Mol Cancer 9:238.  https://doi.org/10.1186/1476-4598-9-238 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Said HS, Suda W, Nakagome S, Chinen H, Oshima K, Kim S, Kimura R, Iraha A, Ishida H, Fujita J, Mano S, Morita H, Dohi T, Oota H, Hattori M (2014) Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res 21(1):15–25.  https://doi.org/10.1093/dnares/dst037 CrossRefPubMedGoogle Scholar
  36. Saito A, Kokubu E, Inagaki S, Imamura K, Kita D, Lamont RJ, Ishihara K (2012) Porphyromonas gingivalis entry into gingival epithelial cells modulated by Fusobacterium nucleatum is dependent on lipid rafts. Microb Pathog 53(5–6):234–242.https://doi.org/10.1016/j.micpath.2012.08.005S0882-4010(12)00157-X[pii]Google Scholar
  37. Schmidt BL, Dierks EJ, Homer L, Potter B (2004) Tobacco smoking history and presentation of oral squamous cell carcinoma. J Oral Maxillofac Surg 62(9):1055–1058CrossRefGoogle Scholar
  38. Schmidt BL, Kuczynski J, Bhattacharya A, Huey B, Corby PM, Queiroz EL, Nightingale K, Kerr AR, DeLacure MD, Veeramachaneni R, Olshen AB, Albertson DG, Muy-Teck T (2014) Changes in abundance of oral microbiota associated with oral cancer. PLoS One 9(6):e98741.  https://doi.org/10.1371/journal.pone.0098741 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Takeuchi H, Furuta N, Morisaki I, Amano A (2011) Exit of intracellular Porphyromonas gingivalis from gingival epithelial cells is mediated by endocytic recycling pathway. Cell Microbiol 13(5):677–691.  https://doi.org/10.1111/j.1462-5822.2010.01564.x CrossRefPubMedGoogle Scholar
  40. Tezal M, Sullivan MA, Hyland A, Marshall JR, Stoler D, Reid ME, Loree TR, Rigual NR, Merzianu M, Hauck L, Lillis C, Wactawski-Wende J, Scannapieco FA (2009) Chronic periodontitis and the incidence of head and neck squamous cell carcinoma. Cancer Epidemiol Biomark Prev 18(9):2406–2412.  https://doi.org/10.1158/1055-9965.EPI-09-0334 CrossRefGoogle Scholar
  41. Yang X, Li C, Pan Y (2016) The influences of periodontal status and periodontal pathogen quantity on salivary 8-hydroxydeoxyguanosine and interleukin-17 levels. J Periodontol 87(5):591–600.  https://doi.org/10.1902/jop.2015.150390 CrossRefPubMedGoogle Scholar
  42. Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, Gao R, Liu M, Yin M, Pan C, Li H, Guo B, Zhu Q, Wei Q, Moyer MP, Wang P, Cai S, Goel A, Qin H, Ma Y (2017) Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of microRNA-21. Gastroenterology 152(4):851–866 e24.  https://doi.org/10.1053/j.gastro.2016.11.018 CrossRefPubMedGoogle Scholar
  43. Yee M, Kim S, Sethi P, Duzgunes N, Konopka K (2014) Porphyromonas gingivalis stimulates IL-6 and IL-8 secretion in GMSM-K, HSC-3 and H413 oral epithelial cells. Anaerobe 28:62–67. https://doi.org/10.1016/j.anaerobe.2014.05.011S1075-9964(14)00061-4[pii]Google Scholar
  44. Yilmaz O, Young PA, Lamont RJ, Kenny GE (2003) Gingival epithelial cell signalling and cytoskeletal responses to Porphyromonas gingivalis invasion. Microbiology 149(Pt 9):2417–2426.  https://doi.org/10.1099/mic.0.26483-0 CrossRefPubMedGoogle Scholar
  45. Yu J, Chen Y, Fu X, Zhou X, Peng Y, Shi L, Chen T, Wu Y (2016) Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer 139(6):1318–1326.  https://doi.org/10.1002/ijc.30168 CrossRefPubMedGoogle Scholar
  46. Zhang G, Rudney JD (2011) Streptococcus cristatus attenuates Fusobacterium nucleatum-induced cytokine expression by influencing pathways converging on nuclear factor-kappaB. Mol Oral Microbiol 26(2):150–163.  https://doi.org/10.1111/j.2041-1014.2010.00600.x CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhang G, Chen R, Rudney JD (2011) Streptococcus cristatus modulates the Fusobacterium nucleatum-induced epithelial interleukin-8 response through the nuclear factor-kappa B pathway. J Periodontal Res 46(5):558–567.  https://doi.org/10.1111/j.1600-0765.2011.01373.x CrossRefPubMedGoogle Scholar
  48. Zhang SK, Zheng R, Chen Q, Zhang S, Sun X, Chen W (2015) Oral cancer incidence and mortality in China. 2011 Chin J Cancer Res 27(1):44–51.  https://doi.org/10.3978/j.issn.1000-9604.2015.01.03 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chunrong Chang
    • 1
  • Fengxue Geng
    • 1
  • Xiaoting Shi
    • 1
  • Yuchao Li
    • 1
  • Xue Zhang
    • 1
  • Xida Zhao
    • 1
  • Yaping Pan
    • 1
    • 2
  1. 1.Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
  2. 2.Department of Oral Biology, School of StomatologyChina Medical UniversityShenyangChina

Personalised recommendations