Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 1, pp 113–123 | Cite as

Engineering of the baculovirus expression system for optimized protein production

  • María Martínez-Solís
  • Salvador HerreroEmail author
  • Alexandra M. Targovnik
Mini-Review

Abstract

Baculoviruses are arthropod-specific large circular double-stranded DNA viruses successfully used for the control of multiple insect pests. In addition to their application in pest control, baculoviruses have become a versatile and powerful eukaryotic vector for the production of large quantities of recombinant proteins for research and biomedical purposes. Since the first recombinant protein was expressed in 1983 using the baculovirus expression system (BEVS), different strategies have been developed for the generation of recombinant viruses and to increase the stability, yield, and posttranslational modifications of recombinant proteins. In this review, we summarize the main methods and elements playing a role in the BEVS emphasizing recent progresses and future developments with respect to the main aspects involved in protein production using the BEVS.

Keywords

Nucleopolyhedrovirus Protein expression Insect cells AcMNPV Insect biofactory 

Notes

Funding

This study was partially supported by Generalitat Valenciana (GVPROMETEOII-2015-001), by the Spanish Ministry of Economy, Industry and Competitiveness-European FEDER funds (grant AGL2014-57752-C2-2R), and by ANPCyT-FONCyT (PICT 2015-1992). AMT is a member of the Research Career of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Agathos SN (2010) Insect cell culture. In: Manual of Industrial Microbiology and Biotechnology, 3rd edn. American Society for Microbiology. ASM, pp 212–222Google Scholar
  2. Angelo CS, Smith GE, Summers MD, Krug RM (1987) Two of the three influenza viral polymerase proteins expressed by using baculovirus vectors form a complex in insect cells. J Virol 61:361–365Google Scholar
  3. Aumiller JJ, Mabashi-asazuma H, Hillar A, Shi X, Jarvis DL (2012) A new glycoengineered insect cell line with an inducibly mammalianized protein N-glycosylation pathway. Glycobiology 22:417–428.  https://doi.org/10.1093/glycob/cwr160 CrossRefPubMedGoogle Scholar
  4. Bonning BC, Roelvink PW, Vlak JM, Possee RD, Hammock BD (1994) Superior expression of juvenile hormone esterase and p-galactosidase from the basic protein promoter of Autographa californica nuclear polyhedrosis virus compared to the p10 protein and polyhedrin promoters. J Gen Virol 75:1551–1556CrossRefGoogle Scholar
  5. Chavez-Pena C, Kamen AA (2018) RNA interference technology to improve the baculovirus-insect cell expression system. Biotechnol Adv 36:443–451.  https://doi.org/10.1016/j.biotechadv.2018.01.008 CrossRefPubMedGoogle Scholar
  6. Chen Y, Yao B, Zhu Z, Yi Y, Lin X, Zhang Z, Shen G (2004) A constitutive super-enhancer: homologous region 3 of Bombyx mori nucleopolyhedrovirus. Biochem Biophys Res Commun 318:1039–1044.  https://doi.org/10.1016/j.bbrc.2004.04.136 CrossRefPubMedGoogle Scholar
  7. Choi JY, Woo SD, Je YH, Kang SK (1999) Development of a novel expression vector system using Spodoptera exigua nucleopolyhedrovirus. Mol Cells 9:504–509PubMedGoogle Scholar
  8. Choi JY, Kim Y, Wang Y, Kang JN, Roh JY, Shim HJ, Woo S, Jin BR, Je YH (2009) Improved baculovirus vectors expressing barnase using promoters from Cotesia plutellae bracovirus. Mol Cells 28:19–24.  https://doi.org/10.1007/s10059-009-0096-x CrossRefPubMedGoogle Scholar
  9. Cochran MA, Faulkner P (1983) Location of homologous DNA sequences interspersed at five regions in the baculovirus AcMNPV genome. J Virol 45:961–970PubMedPubMedCentralGoogle Scholar
  10. Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30:1–18.  https://doi.org/10.1002/btpr.1842 CrossRefPubMedGoogle Scholar
  11. Dodson MS, Crute JJ, Bruckner RC, Lehman IR (1989) Overexpression and assembly of the herpes simplex virus type 1 helicase-primase in insect cells. J Biol Chem 264:20835–20838PubMedGoogle Scholar
  12. Dojima T, Nishina T, Kato T, Uno T, Yagi H, Kato K, Ueda H, Park EY (2010) Improved secretion of molecular chaperone-assisted human IgG in silkworm , and no alterations in their N-linked glycan structures. Biotechnol Prog 26:232–238.  https://doi.org/10.1002/btpr.313 CrossRefPubMedGoogle Scholar
  13. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096.  https://doi.org/10.1126/science.1258096 CrossRefPubMedGoogle Scholar
  14. Ejiofor AO (2016) Insect Biotechnology. In: Raman C, Goldsmith MR, Agunbiade TA (eds) Short views on insect genomics and proteomics: insect proteomics, vol 2. Springer, Switzerland, pp 194–197Google Scholar
  15. Fath-Goodin A, Kroemer J, Martin S, Reeves K, Webb BA (2006) Polydnavirus genes that enhance the baculovirus expression vector system. Adv Virus Res 68:75–90.  https://doi.org/10.1016/S0065-3527(06)68002-0 CrossRefPubMedGoogle Scholar
  16. Fath-Goodin A, Kroemer JA, Webb BA (2009) The Campoletis sonorensis ichnovirus vankyrin protein P-vank-1 inhibits apoptosis in insect Sf9 cells. Insect Mol Biol 18:497–506.  https://doi.org/10.1111/j.1365-2583.2009.00892.x CrossRefPubMedGoogle Scholar
  17. Geisler C, Aumiller JJ, Jarvis DL (2008) A fused lobes gene encodes the processing β-N-acetylglucosaminidase in Sf9 cells. J Biol Chem 283:11330–11339.  https://doi.org/10.1074/jbc.M710279200 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345.  https://doi.org/10.1038/nmeth.1318 CrossRefPubMedGoogle Scholar
  19. Gómez-Sebastián S, López-Vidal J, Escribano JM (2014) Significant productivity improvement of the baculovirus expression vector system by engineering a novel expression cassette. PLoS One 9:e96562.  https://doi.org/10.1371/journal.pone.0096562 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gong Z, Jin Y, Zhang Y (2006) Incorporation of partial polyhedrin homology sequences (PPHS) enhances the production of cloned foreign genes in a baculovirus expression system. Biotechnol Appl Biochem 46:165–170.  https://doi.org/10.1042/BA20050163 CrossRefGoogle Scholar
  21. Grabherr R, Ernst W, Doblhoff-Dier O, Sara M, Katinger H (1997) Expression of foreign proteins on the surface of Autographa californica nuclear polyhedrosis virus. Biotechniques 22:730–735CrossRefGoogle Scholar
  22. Grace TDC (1967) Establishment of a line of cells from the silkworm Bombyx mori. Nature 216:613.  https://doi.org/10.1038/216613a0 CrossRefPubMedGoogle Scholar
  23. Granados RR, Li G, Blissard GW (2007) Insect cell culture and biotechnology. Virol Sin 22:83–93CrossRefGoogle Scholar
  24. Guijarro-Pardo E, Gómez-sebastián S, Escribano JM (2017) In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors. J Virol Methods 250:17–24.  https://doi.org/10.1016/j.jviromet.2017.09.017 CrossRefPubMedGoogle Scholar
  25. Hebert CG, Valdes JJ, Bentley WE (2009) In vitro and in vivo RNA interference mediated suppression of Tn-caspase-1 for improved recombinant protein production in High Five™ cell culture with the baculovirus expression vector system. Biotechnol Bioeng 104:390–399.  https://doi.org/10.1002/bit.22411 CrossRefPubMedGoogle Scholar
  26. Hill-Perkins MS, Possee RD (1990) A baculovirus expression vector derived from the basic protein promoter of Autographa californica nuclear polyhedrosis virus. J Gen Virol 71:971–976CrossRefGoogle Scholar
  27. Hitchman RB, Possee RD, Crombie AT, Chambers A, Ho K, Siaterli E, Lissina O, Sternard H, Novy R, Loomis K, Bird LE, Owens RJ, King LA (2010a) Genetic modification of a baculovirus vector for increased expression in insect cells. Cell Biol Toxicol 26:57–68.  https://doi.org/10.1007/s10565-009-9133-y CrossRefPubMedGoogle Scholar
  28. Hitchman RB, Possee RD, Siaterli E, Richards KS, Clayton AJ, Bird LE, Owens RJ, Carpentier DCJ, King FL, Danquah JO, Spink KG, King LA (2010b) Improved expression of secreted and membrane-targeted proteins in insect cells. Biotechnol Appl Biochem 56:85–93.  https://doi.org/10.1042/BA20090130 CrossRefPubMedGoogle Scholar
  29. Hiyoshi M, Kageshima A, Kato T, Park EY (2007) Construction of a cysteine protease deficient Bombyx mori multiple nucleopolyhedrovirus bacmid and its application to improve expression of a fusion protein. J Virol Methods 144:91–97.  https://doi.org/10.1016/j.jviromet.2007.04.005 CrossRefPubMedGoogle Scholar
  30. Ho Y, Lo H-R, Lee T-C, Wu CPY, Chao Y-C (2004) Enhancement of correct protein folding in vivo by a non-lytic baculovirus. Biochem J 382:695–702.  https://doi.org/10.1042/BJ20040007 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hollister J, Grabenhorst E, Nimtz M, Conradt H, Jarvis DL (2002) Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans. Biochemistry 41:15093–15104CrossRefGoogle Scholar
  32. Ishiyama S, Ikeda M (2010) High-level expression and improved folding of proteins by using the vp39 late promoter enhanced with homologous DNA regions. Biotechnol Lett 32:1637–1647.  https://doi.org/10.1007/s10529-010-0340-7 CrossRefPubMedGoogle Scholar
  33. Jarvis DL, Weinkauf C, Guarino LA (1996) Immediate-early baculovirus vectors for foreign gene expression in transformed or infected insect cells. Protein Expr Purif 8:191–203.  https://doi.org/10.1006/prep.1996.0092 CrossRefPubMedGoogle Scholar
  34. Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, Theilmann DA, Thiem SM, Vlak JM (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257–1266.  https://doi.org/10.1007/s00705-006-0763-6 CrossRefPubMedGoogle Scholar
  35. Kaba SA, Salcedo AM, Wafula PO, Vlak JM, Van Oers MM (2004) Development of a chitinase and v-cathepsin negative bacmid for improved integrity of secreted recombinant proteins. J Virol Methods 122:113–118.  https://doi.org/10.1016/j.jviromet.2004.07.006 CrossRefPubMedGoogle Scholar
  36. Kato T, Kajikawa M, Maenaka K, Park EY (2010) Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85:459–470.  https://doi.org/10.1007/s00253-009-2267-2 CrossRefPubMedGoogle Scholar
  37. Kato T, Kako N, Kotaro K, Miyazaki T, Kondo S, Yagi H, Kato K, Park EY (2017) N-glycan modification of a recombinant protein via coexpression of human glycosyltransferases in silkworm pupae. Sci Rep 7:1409.  https://doi.org/10.1038/s41598-017-01630-6 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kim YK, Cha HJ (2015) Engineering N-glycosylation pathway in insect cells: suppression of β-N-acetylglucosaminidase and expression of β-1,4-galactosyltransferase. In: Castilho A (ed) Glyco-Engineering. Methods in Molecular Biology. Humana Press, New York, pp 179–191CrossRefGoogle Scholar
  39. Kitts PA, Possee RD (1993) A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques 14:810–817PubMedGoogle Scholar
  40. Kitts PA, Ayres MD, Possee RD (1990) Linearization of baculovirus DNA enhances the recovery of recombinant virus expression vectors. Nucleic Acids Res 18:5667–5672.  https://doi.org/10.1093/nar/18.19.5667 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kwon M, Dojima T, Park E (2003) Comparative characterization of growth and recombinant protein production among three insect cell lines with four kinds of serum free media. Biotechnol Bioprocess Eng 8:142–146CrossRefGoogle Scholar
  42. Lai Y, Hsu JT, Chu C, Chang T, Pan K, Lin C (2012) Enhanced recombinant protein production and differential expression of molecular chaperones in sf-caspase-1-repressed stable cells after baculovirus infection. BMC Biotechnol 12Google Scholar
  43. Lee JM, Kawakami N, Mon H, Mitsunobu H, Iiyama K, Ninaki S, Maenaka K, Park EY, Kusakabe T (2012) Establishment of a Bombyx mori nucleopolyhedrovirus (BmNPV) hyper-sensitive cell line from the silkworm e21 strain. Biotechnol Lett 34:1773–1779.  https://doi.org/10.1007/s10529-012-0971-y CrossRefPubMedGoogle Scholar
  44. Li G-X, Hashimoto Y, Granados R (2003) Growth characteristics and expression of recombinant proteins by new cell clones derived from Trichoplusia ni (BTI Tn5B1–4) High Five™ cells. Bioprocess J 2:35–38Google Scholar
  45. Lin G, Li G, Granados RR, Blissard GW (2001) Stable cell lines expressing baculovirus P35: resistance to apoptosis and nutrient stress, and increased glycoprotein secretion. Vitr Cell Dev Biol 37:293–302.  https://doi.org/10.1290/1071-2690(2001)037<0293:SCLEBP>2.0.CO;2 CrossRefGoogle Scholar
  46. Liu Y, Zhang Y (2015) Enhanced production of porcine circovirus type 2 ( PCV2 ) virus-like particles in Sf9 cells by translational enhancers. Biotechnol Lett 37:1765–1771.  https://doi.org/10.1007/s10529-015-1856-7 CrossRefPubMedGoogle Scholar
  47. Lo H-R, Chou C-C, Wu T-Y, Yuen JP-Y, Chao Y-C (2002) Novel baculovirus DNA elements strongly stimulate activities of exogenous and endogenous promoters. J Biol Chem 277:5256–5264.  https://doi.org/10.1074/jbc.M108895200 CrossRefPubMedGoogle Scholar
  48. López-Vidal J, Gómez-Sebastián S, Sánchez-Ramos I, Escribano JM (2013) Characterization of a Trichoplusia ni hexamerin-derived promoter in the AcMNPV baculovirus vector. J Biotechnol 165:201–208.  https://doi.org/10.1016/j.jbiotec.2013.03.012 CrossRefPubMedGoogle Scholar
  49. Lu A, Miller LK (1997) Regulation of baculovirus late and very late gene expression. In: The Baculoviruses. pp 193–216Google Scholar
  50. Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566–4579PubMedPubMedCentralGoogle Scholar
  51. Mabashi-Asazuma H, Jarvis DL (2017) CRISPR-Cas9 vectors for genome editing and host engineering in the baculovirus–insect cell system. PNAS 114:9068–9073.  https://doi.org/10.1073/pnas.1705836114 CrossRefPubMedGoogle Scholar
  52. Mabashi-Asazuma H, Sohn B-H, Kim Y-S, Kuo C-W, Khoo K-H, Kucharski CA, Fraser MJ Jr, Jarvis DL (2015) Targeted glycoengineering extends the protein N-glycosylation pathway in the silkworm silk gland. Insect Biochem Mol Biol 65:20–27.  https://doi.org/10.1016/j.ibmb.2015.07.004.Targeted CrossRefPubMedPubMedCentralGoogle Scholar
  53. Maeda S (1989) Gene transfer vectors of a baculovirus, Bombyx mori nuclear polyhedrosis virus, and their use for expression of foreign genes. In: Mitsuhashi J (ed) Invertebrate Cell Systems and Applications, vol 1. CRC Press, Boca Raton, pp 167–181Google Scholar
  54. Manohar SL, Kanamasa S, Nishina T, Kato T, Park EY (2010) Enhanced gene expression in insect cells and silkworm larva by modified polyhedrin promoter using repeated burst sequence and very late transcriptional factor-1. Biotechnol Bioeng 107:909–916.  https://doi.org/10.1002/bit.22896 CrossRefPubMedGoogle Scholar
  55. Martínez-Alonso M, Gómez-Sebastián S, Escribano JM, Saiz J-C, Ferrer-Miralles N, Villaverde A (2010) DnaK/DnaJ-assisted recombinant protein production in Trichoplusia ni larvae. Appl Microbiol Biotechnol 86:633–639.  https://doi.org/10.1007/s00253-009-2305-0 CrossRefPubMedGoogle Scholar
  56. Martínez-Solís M, Gómez-Sebastián S, Escribano JM, Jakubowska AK, Herrero S (2016) A novel baculovirus-derived promoter with high activity in the baculovirus expression system. PeerJ 4:e2183.  https://doi.org/10.7717/peerj.2183 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Martínez-Solís M, Jakubowska AK, Herrero S (2017) Expression of the lef5 gene from Spodoptera exigua multiple nucleopolyhedrovirus contributes to the baculovirus stability in cell culture. Appl Microbiol Biotechnol 101:7579–7588.  https://doi.org/10.1007/s00253-017-8495-y CrossRefPubMedGoogle Scholar
  58. Mehalko JL, Esposito D (2016) Engineering the transposition-based baculovirus expression vector system for higher efficiency protein production from insect cells. J Biotechnol 238:1–8.  https://doi.org/10.1016/j.jbiotec.2016.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Miller LK (1981) A virus vector for genetic engineering in eukaryotes. In: Panopoulos NJ (ed) Genetic Engineering in the Plant Sciences. Praeger Publishers, New YorkGoogle Scholar
  60. Motohashi T, Shimojima T, Fukagawa T, Maenaka K, Park EY (2005) Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochem Biophys Res Commun 326:564–569.  https://doi.org/10.1016/j.bbrc.2004.11.060 CrossRefPubMedGoogle Scholar
  61. Nagata Y, Jae Man L, Hiroaki M, Imanishi S, Hong SM, Komatsu S, Oshima Y, Kusakabe T (2013) RNAi suppression of β-N-acetylglucosaminidase (BmFDL) for complex-type N-linked glycan synthesis in cultured silkworm cells. Biotechnol Lett 35:1009–1016.  https://doi.org/10.1007/s10529-013-1183-9 CrossRefPubMedGoogle Scholar
  62. Nakajima M, Kato T, Kanamasa S, Park EY (2009) Molecular chaperone-assisted production of human α-1,4-N-acetylglucosaminyltransferase in silkworm larvae using recombinant BmNPV bacmids. Mol Biotechnol 43:67–75.  https://doi.org/10.1007/s12033-009-9174-8 CrossRefPubMedGoogle Scholar
  63. Nerome K, Sugita S, Kuroda K, Hirose T, Nadia O, Soejoedono RD, Ika NLP, Agungpriyono S, Nerome R (2015) The large-scale production of an artificial influenza virus-like particle vaccine in silkworm pupae. Vaccine 33:117–125CrossRefGoogle Scholar
  64. Palmberger D, Wilson IBH, Berger I, Grabherr R, Rendic D (2012) Sweetbac: a new approach for the production of mammalianised glycoproteins in insect cells. PLoS One 7:e342226.  https://doi.org/10.1371/journal.pone.0034226 CrossRefGoogle Scholar
  65. Palmberger D, Klausberger M, Berger I, Grabherr R (2013) MultiBac turns sweet. Bioengineered 4:78–83.  https://doi.org/10.4161/bioe.22327 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Palmberger D, Ashjaei K, Strell S, Hoffmann-Sommergruber K, Grabherr R (2014) Minimizing fucosylation in insect cell-derived glycoproteins reduces binding to IgE antibodies from the sera of patients with allergy. Biotechnol J 9:1206–1214.  https://doi.org/10.1002/biot.201400061 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Palomares LA, Joosten CE, Hughes PR, Granados RR, Shuler ML (2003) Novel insect cell line capable of complex Nglycosylation and sialylation of recombinant proteins. Biotechnol Prog 19:185–192CrossRefGoogle Scholar
  68. Palomares LA, Srivastava IK, Ramírez OT, Cox MMJ (2018) Glycobiotechnology of the insect cell-baculovirus expression system technology. Adv Biochem Eng Biotechnol Jun 10.  https://doi.org/10.1007/10_2018_61
  69. Pijlman GP, Dortmans JCFM, Vermeesch AMG, Yang K, Martens DE, Goldbach RW, Vlak JM (2002) Pivotal role of the non-hr origin of DNA replication in the genesis of defective interfering baculoviruses. J Virol 76:5605–5611.  https://doi.org/10.1128/JVI.76.11.5605 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pijlman GP, Vermeesch AMG, Vlak JM (2003) Cell line-specific accumulation of the baculovirus non-hr origin of DNA replication in infected insect cells. J Invertebr Pathol 84:214–219.  https://doi.org/10.1016/j.jip.2003.10.005 CrossRefPubMedGoogle Scholar
  71. Pijlman GP, Roode EC, Fan X, Roberts LO, Belsham GJ, Vlak JM, van Oers MM (2006) Stabilized baculovirus vector expressing a heterologous gene and GP64 from a single bicistronic transcript. J Biotechnol 123:13–21.  https://doi.org/10.1016/j.jbiotec.2005.10.022 CrossRefPubMedGoogle Scholar
  72. Possee RD, Hitchman RB, Richards KS, Mann SG, Siaterli E, Nixon CP, Irving H, Assenberg R, Alderton D, Owens RJ, King LA (2008) Generation of baculovirus vectors for the high-throughput production of proteins in insect cells. Biotechnol Bioeng 101:1115–1122.  https://doi.org/10.1002/bit.22002 CrossRefPubMedGoogle Scholar
  73. Regev A, Rivkin H, Gurevitz M, Chejanovsky N (2006) New measures of insecticidal efficacy and safety obtained with the 39K promoter of a recombinant baculovirus. FEBS Lett 580:6777–6782.  https://doi.org/10.1016/j.febslet.2006.11.037 CrossRefPubMedGoogle Scholar
  74. Rohrmann GF (2013) Baculovirus molecular biology, 3rd edn. National Center for Biotechnology Information (US), BethesdaGoogle Scholar
  75. Romero LV, Targovnik AM, Wolman FJ, Cascone O, Miranda MV (2011) Rachiplusia nu larva as a biofactory to achieve high level expression of horseradish peroxidase. Biotechnol Lett 33:947–956.  https://doi.org/10.1007/s10529-011-0540-9 CrossRefPubMedGoogle Scholar
  76. Sari D, Gupta K, Raj DBTG, Aubert A, Drncová P, Garzoni F, Fitzgerald D, Berger I (2016) The MultiBac baculovirus/insect cell expression vector system for producing complex protein biologics. In: Advanced Technologies for Protein Complex Production and Characterization. pp 199–215Google Scholar
  77. Shang H, Garretson TA, Senthil Kumar CM, Dieter RF, Cheng X-W (2017) Improved pFastBac™ donor plasmid vectors for higher protein production using the Bac-to-Bac® baculovirus expression vector system. J Biotechnol 255:37–46.  https://doi.org/10.1016/j.jbiotec.2017.06.397 CrossRefPubMedGoogle Scholar
  78. Smith GE, Fraser MJ, Summers MD (1983a) Molecular engineering of the Autographa californica nuclear polyhedrosis virus genome: deletion mutations within the polyhedrin gene. J Virol 46:584–593PubMedPubMedCentralGoogle Scholar
  79. Smith GE, Summers MD, Fraser MJ (1983b) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3:2156–2165.  https://doi.org/10.1128/MCB.3.12.2156.Updated CrossRefPubMedPubMedCentralGoogle Scholar
  80. Steele KH, Stone BJ, Franklin KM, Fath-goodin A, Zhang X, Webb BA, Geisler C (2017) Improving the baculovirus expression vector system with vankyrin-enhanced technology. Am Inst Chem Eng 1496–1507.  https://doi.org/10.1002/btpr.2516
  81. Suzuki T, Kanaya T, Okazaki H, Ogawa K, Usami A, Watanabe H, Kadono-Okuda K, Yamakawa M, Sato H, Mori H, Takahashi S, Oda K (1997) Efficient protein production using a Bombyx mori nuclear polyhedrosis virus lacking the cysteine proteinase gene. J Gen Virol 78:3073–3080.  https://doi.org/10.1099/0022-1317-78-12-3073 CrossRefPubMedGoogle Scholar
  82. Targovnik AM, Arregui MB, Bracco LF, Urtasun N, Baieli MF, Segura MM, Simonella MA, Fogar M, Wolman FJ, Cascone O, Miranda M V (2016) Insect larvae : a new platform to produce commercial recombinant proteins. Curr Pharm Biotechnol 17Google Scholar
  83. Teng C-Y, Chang S-L, van Oers MM, Wu T-Y (2013) Enhanced protein secretion from insect cells by co-expression of the chaperone calreticulin and translation initiation factor eIF4E. Mol Biotechnol 54:68–78.  https://doi.org/10.1007/s12033-012-9545-4 CrossRefPubMedGoogle Scholar
  84. Thiem SM, Miller LK (1990) Differential gene expression mediated by late, very late and hybrid baculovirus promoters. Gene 91:87–94.  https://doi.org/10.1016/0378-1119(90)90166-O CrossRefPubMedGoogle Scholar
  85. Thimiri Govinda Raj DB, Vijayachandran LS, Berger I (2014) OmniBac: universal multigene transfer plasmids for baculovirus expression vector systems. Methods Mol Biol 1091:123–130.  https://doi.org/10.1007/978-1-62703-691-7_7 CrossRefPubMedGoogle Scholar
  86. Tiwari P, Saini S, Upmanyu S, Benjamin B, Tandon R, Saini KS, Sahdev S (2010) Enhanced expression of recombinant proteins utilizing a modified baculovirus expression vector. Mol Biotechnol 46:80–89.  https://doi.org/10.1007/s12033-010-9284-3 CrossRefPubMedGoogle Scholar
  87. Toth AM, Kuo C-W, Khoo K-H, Jarvis DL (2014) A new insect cell glycoengineering approach provides baculovirus-inducible glycogene expression and increases human-type glycosylation efficiency. J Biotechnol 20:19–29.  https://doi.org/10.1016/j.jbiotec.2014.04.011.A CrossRefGoogle Scholar
  88. van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96:6–23.  https://doi.org/10.1099/vir.0.067108-0 CrossRefPubMedGoogle Scholar
  89. Vaughn JL, Goodwin RH, Tompkins GJ, Mccawley P (1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13:213–217CrossRefGoogle Scholar
  90. Venkaiah B, Viswanathan P, Habib S, Hasnain SE (2004) An additional copy of the homologous region (hr1) sequence in the Autographa californica multinucleocapsid polyhedrosis virus genome promotes hyperexpression of foreign genes. Biochemistry 43:8143–8151.  https://doi.org/10.1021/bi049953q CrossRefPubMedGoogle Scholar
  91. Ventini-Monteiro D, Dubois S, Astray RM, Castillo J, Pereira CA (2015) Insect cell entrapment, growth and recovering using a single-use fixed-bed bioreactor. Scaling up and recombinant protein production. J Biotechnol 216:110–115.  https://doi.org/10.1016/j.jbiotec.2015.10.013 CrossRefPubMedGoogle Scholar
  92. Wagner R, Liedtke S, Kretzschmar E, Geyer H, Geyer R, Klenk H-D (1996) Elongation of the N-glycans of fowl plague virus hemagglutinin expressed in Spodoptera frugiperda (Sf9) cells by coexpression of β1,2-N-acetylglucosaminyltransferase I. Glycobiology 6:165–175CrossRefGoogle Scholar
  93. Wang Q, Zhou Y, Chen K, Ju X (2016) Suppression of Bm-Caspase-1 expression in BmN cells enhances recombinant protein production in a baculovirus expression vector system. Mol Biotechnol.  https://doi.org/10.1007/s12033-016-9931-4
  94. Weidner T, Druzinec D, Buchholz R, Czermak P (2017) The components of shear stress affecting insect cells used with the baculovirus expression vector system. Zeitschrift für Naturforschñ 72:429–439CrossRefGoogle Scholar
  95. Weissmann F, Petzold G, Vanderlinden R, Huis in’t Veld PJ, Brown NG, Lampert F, Westermann S, Stark H, Schulman BA, Peters J-M (2016) biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. PNAS E2566.  https://doi.org/10.1073/pnas.1604935113
  96. Wickham TJ, Davis T, Shuler RRGML, Woods HA (1992) Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog 8:391–396CrossRefGoogle Scholar
  97. Williams GV, Rohel DZ, Kuzio J, Faulkner P (1989) A cytopathological investigation of Autographa californica nuclear polyhedrosis virus p10 gene function using insertion/deletion mutants. J gen Virol 70:187–202CrossRefGoogle Scholar
  98. Wu H, Hebert CG, Hung C, Quan DN, Carter KK, Bentley WE (2013) Tuning cell cycle of insect cells for enhanced protein production. J Biotechnol 168:55–61.  https://doi.org/10.1016/j.jbiotec.2013.08.017 CrossRefPubMedGoogle Scholar
  99. Zitzmann J, Sprick G, Weidner T, Schreiber C, Czermak P (2017) Process optimization for recombinant protein expression in insect cells. In: New Insights into Cell Culture Technology. INTECH, pp 43–97Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED)Universitat de ValènciaBurjassotSpain
  2. 2.Facultad de Farmacia y Bioquímica.Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de BiotecnologíaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Instituto de Nanobiotecnología (NANOBIOTEC)CONICET-Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations