Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 1, pp 315–326 | Cite as

Identification of novel bacteriophage vB_EcoP-EG1 with lytic activity against planktonic and biofilm forms of uropathogenic Escherichia coli

  • Yu Gu
  • Yue Xu
  • Jing Xu
  • Xinyan Yu
  • Xu Huang
  • Genyan Liu
  • Xiaoqiu LiuEmail author
Applied genetics and molecular biotechnology
  • 373 Downloads

Abstract

Urinary tract infections are one of the most common infectious diseases worldwide. Uropathogenic Escherichia coli (UPEC) is a major cause of unary tract infection. Due to increasing prevalence of multidrug resistance, alternative methods to eradicate the UPECs are urgently needed. In this respect, phage therapy has been demonstrated to be a good candidate. Here, we described a novel bacteriophage named vB_EcoP-EG1, which can infect several strains of UPEC. Phage morphology and genome sequencing analysis show that vB_EcoP-EG1 belongs to the T7-like Podoviridae. vB_EcoP-EG1 possesses a genome (39,919 bp) containing 51 predicted genes and 149 bp terminal repeats. vB_EcoP-EG1 genome does not encode toxic proteins or proteins related to lysogeny. And no known virulent proteins were found in purified phage particles by mass spectrometry. vB_EcoP-EG1 appeared to be relatively specific and sensitive to clinical UPEC strains, which could infect 10 out of 21 clinical multidrug-resistant UPEC strains. In addition, vB_EcoP-EG1 suspension can eliminate biofilm formed by E. coli MG1655 and multidrug-resistant UPEC strain 390G7. Therefore, we concluded that vB_EcoP-EG1 has desirable characteristics for potential therapy, which may serve as an alternative to antibiotic therapy against urinary tract infections caused by multidrug-resistant UPEC.

Keywords

Phage Unary tract infection Genome sequencing Mass spectrometry UPEC 

Notes

Acknowledgments

We would like to thank Dr. Xuesen Zhang (Nanjing Medical University) for providing assistance with the English grammar.

Funding information

This work was supported by the National Natural Science Foundation of China (81501797) and the Natural Science Foundation of Jiangsu Province (BK20151558).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

Clinical strains were isolated from clinical samples of patients in the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Supplementary material

253_2018_9471_MOESM1_ESM.pdf (211 kb)
ESM 1 (PDF 211 kb)

References

  1. Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69:285–289CrossRefGoogle Scholar
  2. Birgy A, Doit C, Mariani-Kurkdjian P, Genel N, Faye A, Arlet G, Bingen E (2011) Early detection of colonization by VIM-1-producing Klebsiella pneumoniae and NDM-1-producing Escherichia coli in two children returning to France. J Clin Microbiol 49:3085–3087.  https://doi.org/10.1128/JCM.00540-11 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bolocan AS, Callanan J, Forde A, Ross P, Hill C (2016) Phage therapy targeting Escherichia coli—a story with no end? FEMS Microbiol Lett 363:fnw256CrossRefGoogle Scholar
  4. Carrias A, Welch TJ, Waldbieser GC, Mead DA, Terhune JS, Liles MR (2011) Comparative genomic analysis of bacteriophages specific to the channel catfish pathogen Edwardsiella ictaluri. Virol J 8:6.  https://doi.org/10.1186/1743-422X-8-6 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen M, Xu J, Yao H, Lu C, Zhang W (2016) Isolation, genome sequencing and functional analysis of two T7-like coliphages of avian pathogenic Escherichia coli. Gene 582:47–58.  https://doi.org/10.1016/j.gene.2016.01.049 CrossRefPubMedGoogle Scholar
  6. Chenoweth CE, Gould CV, Saint S (2014) Diagnosis, management, and prevention of catheter-associated urinary tract infections. Infect Dis Clin N Am 28:105–119.  https://doi.org/10.1016/j.idc.2013.09.002 CrossRefGoogle Scholar
  7. Chibeu A, Lingohr EJ, Masson L, Manges A, Harel J, Ackermann HW, Kropinski AM, Boerlin P (2012) Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms. Viruses 4:471–487.  https://doi.org/10.3390/v4040471 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chopin MC, Chopin A, Roux C (1976) Definitions of bacteriophage groups according to their lytic action on mesophilic lactic streptococci. Appl Environ Microbiol 32:741–746PubMedPubMedCentralGoogle Scholar
  9. Danis-Wlodarczyk K, Olszak T, Arabski M, Wasik S, Majkowska-Skrobek G, Augustyniak D, Gula G, Briers Y, Jang HB, Vandenheuvel D, Duda KA, Lavigne R, Drulis-Kawa Z (2015) Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 and their efficacy against Pseudomonas aeruginosa biofilm. PLoS One 10:e0137015.  https://doi.org/10.1371/journal.pone.0137015. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dufour N, Clermont O, La Combe B, Messika J, Dion S, Khanna V, Denamur E, Ricard JD, Debarbieux L (2016) Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex. J Antimicrob Chemother 71:3072–3080CrossRefGoogle Scholar
  11. Dunn JJ, Studier FW (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 166:477–535CrossRefGoogle Scholar
  12. Ellis EL, Delbruck M (1939) The growth of bacteriophage. J Gen Physiol 22:365–384CrossRefGoogle Scholar
  13. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–284.  https://doi.org/10.1038/nrmicro3432 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Foxman B (2010) The epidemiology of urinary tract infection. Nat Rev Urol 7:653–660.  https://doi.org/10.1038/nrurol.2010.190 CrossRefPubMedGoogle Scholar
  15. Foxman B, Brown P (2003) Epidemiology of urinary tract infections: transmission and risk factors, incidence, and costs. Infect Dis Clin North Am 17:227–241CrossRefGoogle Scholar
  16. Galtier M, De Sordi L, Maura D, Arachchi H, Volant S, Dillies MA, Debarbieux L (2016) Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environ Microbiol 18:2237–2245.  https://doi.org/10.1111/1462-2920.13284 CrossRefPubMedGoogle Scholar
  17. Gu J, Liu X, Li Y, Han W, Lei L, Yang Y, Zhao H, Gao Y, Song J, Lu R, Sun C, Feng X (2012) Method for generation phage cocktail with great therapeutic potential. PLoS One 7:e31698.  https://doi.org/10.1371/journal.pone.0031698. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Guiton PS, Cusumano CK, Kline KA, Dodson KW, Han Z, Janetka JW, Henderson JP, Caparon MG, Hultgren SJ (2012) Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob Agents Chemother 56:4738–4745.  https://doi.org/10.1128/AAC.00447-12 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guo F, Liu Z, Fang PA, Zhang Q, Wright ET, Wu W, Zhang C, Vago F, Ren Y, Jakana J, Chiu W, Serwer P, Jiang W (2014) Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions. Proc Natl Acad Sci U S A 111:E4606–E4614.  https://doi.org/10.1073/pnas.1407020111 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hashemolhosseini S, Montag D, Krämer L, Henning U (1994) Determinants of receptor specificity of coliphages of the T4 family. A chaperone alters the host range. J Mol Biol 241:524–533CrossRefGoogle Scholar
  21. Heineman RH, Bull JJ (2007) Testing optimality with experimental evolution: lysis time in a bacteriophage. Evolution 61:1695–1709CrossRefGoogle Scholar
  22. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci U S A 96:2192–2197CrossRefGoogle Scholar
  23. Johnson JR, Tchesnokova V, Johnston B, Clabots C, Roberts PL, Billig M, Riddell K, Rogers P, Qin X, Butler-Wu S, Price LB, Aziz M, Nicolas-Chanoine MH, Debroy C, Robicsek A, Hansen G, Urban C, Platell J, Trott DJ, Zhanel G, Weissman SJ, Cookson BT, Fang FC, Limaye AP, Scholes D, Chattopadhyay S, Hooper DC, Sokurenko EV (2013) Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. J Infect Dis 207:919–928.  https://doi.org/10.1093/infdis/jis933 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595.  https://doi.org/10.1016/j.tibtech.2010.08.001 CrossRefPubMedGoogle Scholar
  25. Laupland KB, Ross T, Pitout JD, Church DL, Gregson DB (2007) Community-onset urinary tract infections: a population based assessment. Infection 35:150–153CrossRefGoogle Scholar
  26. Lo E, Nicolle LE, Coffin SE, Gould C, Maragakis LL, Meddings J, Pegues DA, Pettis AM, Saint S, Yokoe DS (2014) Strategies to prevent catheter-associated urinary tract infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35:464–479.  https://doi.org/10.1086/675718 CrossRefPubMedGoogle Scholar
  27. Nguyen HM, Kang C (2014) Lysis delay and burst shrinkage of coliphage T7 by deletion of terminator Tphi reversed by deletion of early genes. J Virol 88:2107–2115.  https://doi.org/10.1128/JVI.03274-13 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nilsson AS (2014) Phage therapy—constraints and possibilities. Ups J Med Sci 119:192–198.  https://doi.org/10.3109/03009734.2014.902878 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nishikawa H, Yasuda M, Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Ujihara T, Shimizu Y, Shuin T, Matsuzaki S (2008) T-even-related bacteriophages as candidates for treatment of Escherichia coli urinary tract infections. Arch Virol 153:507–515.  https://doi.org/10.1007/s00705-007-0031-4 CrossRefPubMedGoogle Scholar
  30. Niveditha S, Pramodhini S, Umadevi S, Kumar S, Stephen S (2012) The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). J Clin Diagn Res 6:1478–1482.  https://doi.org/10.7860/JCDR/2012/4367.2537 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Peña C, Gudiol C, Tubau F, Saballs M, Pujol M, Dominguez MA, Calatayud L, Ariza J, Gudiol F (2006) Risk-factors for acquisition of extended-spectrum beta-lactamase-producing Escherichia coli among hospitalised patients. Clin Microbiol Infect 12:279–284CrossRefGoogle Scholar
  32. Regeimbal JM, Jacobs AC, Corey BW, Henry MS, Thompson MG, Pavlicek RL, Quinones J, Hannah RM, Ghebremedhin M, Crane NJ, Zurawski DV, Teneza-Mora NC, Biswas B, Hall ER (2016) Personalized therapeutic cocktail of wild environmental phages rescues mice from Acinetobacter baumannii wound infections. Antimicrob Agents Chemother 60:5806–5816.  https://doi.org/10.1128/AAC.02877-15 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rüden H, Gastmeier P, Daschner FD, Schumacher M (1997) Nosocomial and community-acquired infections in Germany. Summary of the results of the first national prevalence study (NIDEP). Infection 25:199–202CrossRefGoogle Scholar
  34. Sahm DF, Thornsberry C, Mayfield DC, Jones ME, Karlowsky JA (2001) Multidrug-resistant urinary tract isolates of Escherichia coli: prevalence and patient demographics in the United States in 2000. Antimicrob Agents Chemother 45:1402–1406CrossRefGoogle Scholar
  35. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefGoogle Scholar
  36. Sillankorva S, Oliveira D, Moura A, Henriques M, Faustino A, Nicolau A, Azeredo J (2011) Efficacy of a broad host range lytic bacteriophage against E. coli adhered to urothelium. Curr Microbiol 62:1128–1132.  https://doi.org/10.1007/s00284-010-9834-8 CrossRefPubMedGoogle Scholar
  37. Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE (2008) Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol 159:349–357.  https://doi.org/10.1016/j.resmic.2008.04.010 CrossRefPubMedGoogle Scholar
  38. Stamm WE, Norrby SR (2001) Urinary tract infections: disease panorama and challenges. J Infect Dis 183(Suppl 1):S1–S4CrossRefGoogle Scholar
  39. Stroud RM, Serwer P, Ross MJ (1981) Assembly of bacteriophage T7. Dimensions of the bacteriophage and its capsids. Biophys J 36:743–757CrossRefGoogle Scholar
  40. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010.  https://doi.org/10.1093/bioinformatics/btr039 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sybesma W, Zbinden R, Chanishvili N, Kutateladze M, Chkhotua A, Ujmajuridze A, Mehnert U, Kessler TM (2016) Bacteriophages as potential treatment for urinary tract infections. Front Microbiol 7:465.  https://doi.org/10.3389/fmicb.2016.00465 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Synnott AJ, Kuang Y, Kurimoto M, Yamamichi K, Iwano H, Tanji Y (2009) Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host ranges and potent lytic capabilities. Appl Environ Microbiol 75:4483–4490.  https://doi.org/10.1128/AEM.02641-08 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tabib-Salazar A, Liu B, Shadrin A, Burchell L, Wang Z, Wang Z, Goren MG, Yosef I, Qimron U, Severinov K, Matthews SJ, Wigneshweraraj S (2017) Full shut-off of Escherichia coli RNA-polymerase by T7 phage requires a small phage-encoded DNA-binding protein. Nucleic Acids Res 45:7697–7707.  https://doi.org/10.1093/nar/gkx370 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Totsika M, Moriel DG, Idris A, Rogers BA, Wurpel DJ, Phan MD, Paterson DL, Schembri MA (2012) Uropathogenic Escherichia coli mediated urinary tract infection. Curr Drug Targets 13:1386–1399CrossRefGoogle Scholar
  45. Vandamme EJ, Mortelmans K (2018) A century of bacteriophage research and applications: impact on biotechnology, health, ecology and economy. J Chem Technol Biotechnol.  https://doi.org/10.1002/jctb.5810
  46. Vidakovic L, Singh PK, Hartmann R, Nadell CD, Drescher K (2018) Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat Microbiol 3:26–31.  https://doi.org/10.1038/s41564-017-0050-1 CrossRefPubMedGoogle Scholar
  47. Watts G (2017) Phage therapy: revival of the bygone antimicrobial. Lancet 390:2539–2540.  https://doi.org/10.1016/S0140-6736(17)33249-X CrossRefPubMedGoogle Scholar
  48. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114CrossRefGoogle Scholar
  49. Xu Y, Ma Y, Yao S, Jiang Z, Pei J, Cheng C (2016) Characterization, genome sequence, and analysis of Escherichia phage CICC 80001, a bacteriophage infecting an efficient L-aspartic acid producing Escherichia coli. Food Environ Virol 8:18–26.  https://doi.org/10.1007/s12560-015-9218-0 CrossRefPubMedGoogle Scholar
  50. Yosef I, Goren MG, Globus R, Molshanski-Mor S, Qimron U (2017) Extending the host range of bacteriophage particles for DNA transduction. Mol Cell 66:721–728.  https://doi.org/10.1016/j.molcel.2017.04.025 CrossRefPubMedGoogle Scholar
  51. Yu X, Xu Y, Gu Y, Zhu Y, Liu X (2017) Characterization and genomic study of “phiKMV-like” phage PAXYB1 infecting Pseudomonas aeruginosa. Sci Rep 7:13068.  https://doi.org/10.1038/s41598-017-13363-7 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu Gu
    • 1
    • 2
  • Yue Xu
    • 1
    • 2
  • Jing Xu
    • 1
    • 2
  • Xinyan Yu
    • 1
    • 2
  • Xu Huang
    • 3
    • 4
  • Genyan Liu
    • 3
    • 4
  • Xiaoqiu Liu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Pathogen Biology of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
  2. 2.Department of MicrobiologyNanjing Medical UniversityNanjingChina
  3. 3.Department of Laboratory MedicineThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
  4. 4.National Key Clinical Department of Laboratory MedicineNanjingChina

Personalised recommendations