Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 1, pp 375–393 | Cite as

Bifidobacterium adolescentis CGMCC 15058 alleviates liver injury, enhances the intestinal barrier and modifies the gut microbiota in d-galactosamine-treated rats

  • Yating Li
  • Longxian Lv
  • Jianzhong Ye
  • Daiqiong Fang
  • Ding Shi
  • Wenrui Wu
  • Qing Wang
  • Jingjing Wu
  • Liya Yang
  • Xiaoyuan Bian
  • Xianwan Jiang
  • Huiyong Jiang
  • Ren Yan
  • Conggao Peng
  • Lanjuan LiEmail author
Applied Microbial and Cell Physiology

Abstract

Acute liver failure is a drastic, unpredictable clinical syndrome with high mortality. Various preventive and adjuvant therapies based on modulating the gut flora have been proposed for hepatic injury. We aimed to explore the preventive and therapeutic effects of Bifidobacterium adolescentis CGMCC15058 on rat liver failure, as well as the potential microecological and immunological mechanisms of those effects. B. adolescentis CGMCC15058 (3 × 109 CFU), isolated from healthy human stool, was gavaged to Sprague–Dawley rats for 14 days. Acute liver injury was induced on the 15th day by intraperitoneal injection of d-galactosamine. After 24 h, liver and terminal ileum histology, liver function, plasma cytokines, bacterial translocation and gut microbiota composition were assessed. We found that pretreatment with B. adolescentis significantly relieved elevated serum levels of alanine aminotransferase (ALT), total bile acid and lipopolysaccharide-binding protein and enhanced the expression of mucin 4 and the tight junction protein zonula occludens-1. B. adolescentis exhibited anti-inflammatory properties as indicated by decreased levels of mTOR and the inflammatory cytokines TNF-α and IL-6, as well as elevated levels of the anti-inflammatory cytokine interleukins-10 in the liver. Similar anti-inflammatory signs were also found in plasma. B. adolescentis significantly altered the microbial community, depleting the common pathogenic taxon Proteus and markedly enriching the taxa Coriobacteriaceae, Bacteroidales and Allobaculum, which are involved in regulating the metabolism of lipids and aromatic amino acids. Our findings not only suggest B. adolescentis acts as a prospective probiotic against liver failure but also provide new insights into the prevention and treatment of liver disease.

Keywords

Acute liver failure Bifidobacterium adolescentis d-galactosamine Gut microbiota 

Notes

Author contributions

Y.L. and L. Lv designed and conceived the experiments. Y.L., J. Ye., D.F. and D.S. performed the experiments and collected samples. L.Y. and X.B. performed DNA extractions. X.J. oversaw the RT-PCR and immunohistochemical staining. Y.L., L. Lv and J. Ye performed library construction and sequencing and designed the analysis. Q.W., P. CG and J. Wu analysed the data. D.S. drafted the manuscript. All authors contributed to and approved the final article.

Funding information

This study was supported by the National Science Foundation of China (NSFC) (81330011, 81790631 and 81570512) and the National Basic Research Program of China (973 program) (2013CB531401).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures were performed according to the 2011 National Institutes of Health Guide for the care and use of laboratory animals and were approved by the Animal Care and Use Committee of the First Affiliated Hospital, School of Medicine, Zhejiang University.

Informed consent

All participants in this study provided a written informed consent before sample collection. The research is in accordance with the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the Institutional Review Board of the First Affiliated Hospital of Zhejiang University.

Supplementary material

253_2018_9454_MOESM1_ESM.pdf (400 kb)
ESM 1 (PDF 400 kb)

References

  1. Abreu MT (2010) Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10:131–144.  https://doi.org/10.1038/nri2707 CrossRefPubMedGoogle Scholar
  2. Adawi D, Ahrne S, Molin G (2001) Effects of different probiotic strains of Lactobacillus and Bifidobacterium on bacterial translocation and liver injury in an acute liver injury model. Int J Food Microbiol 70:213–220CrossRefGoogle Scholar
  3. Akashi-Takamura S, Furuta T, Takahashi K, Tanimura N, Kusumoto Y, Kobayashi T, Saitoh S, Adachi Y, Doi T, Miyake K (2006) Agonistic antibody to TLR4/MD-2 protects mice from acute lethal hepatitis induced by TNF-alpha. J Immunol 176:4244–4251CrossRefGoogle Scholar
  4. Allman M, Gaskin L, Rivera CA (2010) CCl4-induced hepatic injury in mice fed a Western diet is associated with blunted healing. J Gastroenterol Hepatol 25:635–643.  https://doi.org/10.1111/j.1440-1746.2009.06112.x CrossRefPubMedPubMedCentralGoogle Scholar
  5. Antoniades CG, Berry PA, Wendon JA, Vergani D (2008) The importance of immune dysfunction in determining outcome in acute liver failure. J Hepatol 49:845–861.  https://doi.org/10.1016/j.jhep.2008.08.009 CrossRefPubMedGoogle Scholar
  6. Arboleya S, Watkins C, Stanton C, Ross RP (2016) Gut Bifidobacteria populations in human health and aging. Front Microbiol 7:1204.  https://doi.org/10.3389/fmicb.2016.01204 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arrazuria R, Elguezabal N, Juste RA, Derakhshani H, Khafipour E (2016) Mycobacterium avium subspecies paratuberculosis infection modifies gut microbiota under different dietary conditions in a rabbit model. Front Microbiol 7:446.  https://doi.org/10.3389/fmicb.2016.00446 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Aspinall RJ, Weis SM, Barnes L, Lutu-Fuga K, Bylund DJ, Pockros PJ, Cheresh DA (2011) A Src family kinase inhibitor improves survival in experimental acute liver failure associated with elevated cerebral and circulating vascular endothelial growth factor levels. Liver Int 31:1222–1230.  https://doi.org/10.1111/j.1478-3231.2011.02554.x CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bajaj JS (2014) The role of microbiota in hepatic encephalopathy. Gut Microbes 5:397–403.  https://doi.org/10.4161/gmic.28684 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bajaj JS, Hylemon PB, Ridlon JM, Heuman DM, Daita K, White MB, Monteith P, Noble NA, Sikaroodi M, Gillevet PM (2012) Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol 303:G675–G685.  https://doi.org/10.1152/ajpgi.00152.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, Puri P, Sterling RK, Luketic V, Stravitz RT, Siddiqui MS, Fuchs M, Thacker LR, Wade JB, Daita K, Sistrun S, White MB, Noble NA, Thorpe C, Kakiyama G, Pandak WM, Sikaroodi M, Gillevet PM (2014) Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis. Aliment Pharmacol Ther 39:1113–1125.  https://doi.org/10.1111/apt.12695 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599.  https://doi.org/10.1128/AEM.72.5.3593-3599.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bernal W, Lee WM, Wendon J, Larsen FS, Williams R (2015) Acute liver failure: a curable disease by 2024? J Hepatol 62:S112–S120.  https://doi.org/10.1016/j.jhep.2014.12.016 CrossRefPubMedGoogle Scholar
  14. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brown AL Jr (1962) Microvilli of the human jejunal epithelial cell. J Cell Biol 12:623–627CrossRefGoogle Scholar
  16. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Demchenko OA, Nechypurenko OV, Spivak MY (2017) Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA J 8:357–376.  https://doi.org/10.1007/s13167-017-0117-3 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Canbay A, Chen SY, Gieseler RK, Malago M, Karliova M, Gerken G, Broelsch CE, Treichel U (2005) Overweight patients are more susceptible for acute liver failure. Hepatogastroenterology 52:1516–1520PubMedGoogle Scholar
  18. Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15:1546–1558CrossRefGoogle Scholar
  19. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481.  https://doi.org/10.2337/db07-1403 CrossRefPubMedGoogle Scholar
  20. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cario E, Gerken G, Podolsky DK (2004) Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127:224–238CrossRefGoogle Scholar
  22. Chen J, Wang R, Li XF, Wang RL (2012) Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br J Nutr 107:1429–1434.  https://doi.org/10.1017/S0007114511004491 CrossRefPubMedGoogle Scholar
  23. Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN (1970) Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg 101:478–483CrossRefGoogle Scholar
  24. Cho SM, Lee SG, Kim HS, Kim JH (2014) Establishing pediatric reference intervals for 13 biochemical analytes derived from normal subjects in a pediatric endocrinology clinic in Korea. Clin Biochem 47:268–271.  https://doi.org/10.1016/j.clinbiochem.2014.09.010 CrossRefPubMedGoogle Scholar
  25. Davies NA, Banares R (2015) A new horizon for liver support in acute liver failure. J Hepatol 63:303–305.  https://doi.org/10.1016/j.jhep.2015.05.020 CrossRefPubMedGoogle Scholar
  26. Del Chierico F, Nobili V, Vernocchi P, Russo A, Stefanis C, Gnani D, Furlanello C, Zandona A, Paci P, Capuani G, Dallapiccola B, Miccheli A, Alisi A, Putignani L (2017) Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 65:451–464.  https://doi.org/10.1002/hep.28572 CrossRefPubMedGoogle Scholar
  27. Dias G, Dallai R, Carapelli A, Almeida JP, Campos LA, Faroni LR, Lino-Neto J (2017) First record of gregarines (Apicomplexa) in seminal vesicle of insect. Sci Rep 7:175.  https://doi.org/10.1038/s41598-017-00289-3 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dong F, Du YR, Xie W, Strong JA, He XJ, Zhang JM (2012) Increased function of the TRPV1 channel in small sensory neurons after local inflammation or in vitro exposure to the pro-inflammatory cytokine GRO/KC. Neurosci Bull 28:155–164.  https://doi.org/10.1007/s12264-012-1208-8 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998.  https://doi.org/10.1038/nmeth.2604 CrossRefPubMedGoogle Scholar
  30. Fang H, Liu A, Dirsch O, Sun J, Jin H, Lu M, Yang D, Dahmen U (2012) Serum LBP levels reflect the impaired synthetic capacity of the remnant liver after partial hepatectomy in rats. J Immunol Methods 382:68–75.  https://doi.org/10.1016/j.jim.2012.05.006 CrossRefPubMedGoogle Scholar
  31. Fang D, Shi D, Lv L, Gu S, Wu W, Chen Y, Guo J, Li A, Hu X, Guo F, Ye J, Li Y, Li L (2017) Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10 attenuate D-galactosamine-induced liver injury by modifying the gut microbiota. Sci Rep 7:8770.  https://doi.org/10.1038/s41598-017-09395-8 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fink MP (2003) Intestinal epithelial hyperpermeability: update on the pathogenesis of gut mucosal barrier dysfunction in critical illness. Curr Opin Crit Care 9:143–151CrossRefGoogle Scholar
  33. Frick JS, Fink K, Kahl F, Niemiec MJ, Quitadamo M, Schenk K, Autenrieth IB (2007) Identification of commensal bacterial strains that modulate Yersinia enterocolitica and dextran sodium sulfate-induced inflammatory responses: implications for the development of probiotics. Infect Immun 75:3490–3497.  https://doi.org/10.1128/IAI.00119-07 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Galanos C, Freudenberg MA, Reutter W (1979) Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A 76:5939–5943CrossRefGoogle Scholar
  35. Hackstein CP, Assmus LM, Welz M, Klein S, Schwandt T, Schultze J, Förster I, Gondorf F, Beyer M, Kroy D, Kurts C, Trebicka J, Kastenmüller W, Knolle PA, Abdullah Z (2017) Gut microbial translocation corrupts myeloid cell function to control bacterial infection during liver cirrhosis. Gut 66:507–518.  https://doi.org/10.1136/gutjnl-2015-311224 CrossRefPubMedGoogle Scholar
  36. Hassoun HT, Kone BC, Mercer DW, Moody FG, Weisbrodt NW, Moore FA (2001) Post-injury multiple organ failure: the role of the gut. Shock 15:1–10CrossRefGoogle Scholar
  37. Heuvelin E, Lebreton C, Grangette C, Pot B, Cerf-Bensussan N, Heyman M (2009) Mechanisms involved in alleviation of intestinal inflammation by Bifidobacterium breve soluble factors. PLoS One 4:e5184.  https://doi.org/10.1371/journal.pone.0005184 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hill C, Scott K, Klaenhammer TR, Quigley E, Sanders ME (2016) Probiotic nomenclature matters. Gut Microbes 7:1–2.  https://doi.org/10.1080/19490976.2015.1127484 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Holzapfel WH, Haberer P, Geisen R, Bjorkroth J, Schillinger U (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73:365S–373S.  https://doi.org/10.1093/ajcn/73.2.365s CrossRefPubMedGoogle Scholar
  40. Jaeschke H, Fisher MA, Lawson JA, Simmons CA, Farhood A, Jones DA (1998) Activation of caspase 3 (CPP32)-like proteases is essential for TNF-alpha-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J Immunol 160:3480–3486PubMedGoogle Scholar
  41. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205.  https://doi.org/10.1093/nar/gkt1076 CrossRefGoogle Scholar
  42. Keppler DO, Pausch J, Decker K (1974) Selective uridine triphosphate deficiency induced by D-galactosamine in liver and reversed by pyrimidine nucleotide precursors. Effect on ribonucleic acid synthesis. J Biol Chem 249:211–216PubMedGoogle Scholar
  43. Khokhlova EV, Smeianov VV, Efimov BA, Kafarskaia LI, Pavlova SI, Shkoporov AN (2012) Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants. Microbiol Immunol 56:27–39.  https://doi.org/10.1111/j.1348-0421.2011.00398.x CrossRefPubMedGoogle Scholar
  44. Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N, Kiernan TW, Wollman J (1981) Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology 1:431–435CrossRefGoogle Scholar
  45. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, Hallen A, Martens E, Bjorck I, Backhed F (2015) Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab 22:971–982.  https://doi.org/10.1016/j.cmet.2015.10.001 CrossRefPubMedGoogle Scholar
  46. Lang AL, Beier JI (2018) Interaction of volatile organic compounds and underlying liver disease: a new paradigm for risk. Biol Chem.  https://doi.org/10.1515/hsz-2017-0324
  47. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821.  https://doi.org/10.1038/nbt.2676 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lebrun LJ, Lenaerts K, Kiers D, Pais de Barros JP, Le Guern N, Plesnik J, Thomas C, Bourgeois T, Dejong CHC, Kox M, Hundscheid IHR, Khan NA, Mandard S, Deckert V, Pickkers P, Drucker DJ, Lagrost L, Grober J (2017) Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion. Cell Rep 21:1160–1168.  https://doi.org/10.1016/j.celrep.2017.10.008 CrossRefPubMedGoogle Scholar
  49. Lee WS, Sokol RJ (2015) Intestinal microbiota, lipids, and the pathogenesis of intestinal failure-associated liver disease. J Pediatr 167:519–526.  https://doi.org/10.1016/j.jpeds.2015.05.048 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lehmann V, Freudenberg MA, Galanos C (1987) Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice. J Exp Med 165:657–663CrossRefGoogle Scholar
  51. Li LG, Cai L, Zhang XX, Zhang T (2014) Potentially novel copper resistance genes in copper-enriched activated sludge revealed by metagenomic analysis. Appl Microbiol Biotechnol 98:10255–10266.  https://doi.org/10.1007/s00253-014-5939-5 CrossRefPubMedGoogle Scholar
  52. Lu Y, Wang WJ, Song YZ, Liang ZQ (2014) The protective mechanism of schisandrin A in D-galactosamine-induced acute liver injury through activation of autophagy. Pharm Biol 52:1302–1307.  https://doi.org/10.3109/13880209.2014.890232 CrossRefPubMedGoogle Scholar
  53. Luo M, Yang XX, Tan B, Zhou XP, Xia HM, Xue J, Xu X, Qing Y, Li CR, Qiu JF, Li YL (2016) Distribution of common pathogens in patients with pyogenic liver abscess in China: a meta-analysis. Eur J Clin Microbiol Infect Dis 35:1557–1565.  https://doi.org/10.1007/s10096-016-2712-y CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lv LX, Hu XJ, Qian GR, Zhang H, Lu HF, Zheng BW, Jiang L, Li LJ (2014) Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 improves acute liver injury induced by D-galactosamine in rats. Appl Microbiol Biotechnol 98:5619–5632.  https://doi.org/10.1007/s00253-014-5638-2 CrossRefPubMedGoogle Scholar
  55. Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, De Simone C (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121:580–591CrossRefGoogle Scholar
  56. Maitra SK, Rachmilewitz D, Eberle D, Kaplowitz N (1981) The hepatocellular uptake and biliary excretion of endotoxin in the rat. Hepatology 1:401–407CrossRefGoogle Scholar
  57. Marquet P, Duncan SH, Chassard C, Bernalier-Donadille A, Flint HJ (2009) Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett 299:128–134.  https://doi.org/10.1111/j.1574-6968.2009.01750.x CrossRefPubMedGoogle Scholar
  58. Mehta G, Gustot T, Mookerjee RP, Garcia-Pagan JC, Fallon MB, Shah VH, Moreau R, Jalan R (2014) Inflammation and portal hypertension - the undiscovered country. J Hepatol 61:155–163.  https://doi.org/10.1016/j.jhep.2014.03.014 CrossRefPubMedGoogle Scholar
  59. Moratalla A, Caparros E, Juanola O, Portune K, Puig-Kroger A, Estrada-Capetillo L, Bellot P, Gomez-Hurtado I, Pinero P, Zapater P, Gonzalez-Navajas JM, Such J, Sanz Y, Frances R (2016a) Bifidobacterium pseudocatenulatum CECT7765 induces an M2 anti-inflammatory transition in macrophages from patients with cirrhosis. J Hepatol 64:135–145.  https://doi.org/10.1016/j.jhep.2015.08.020 CrossRefPubMedGoogle Scholar
  60. Moratalla A, Gomez-Hurtado I, Moya-Perez A, Zapater P, Peiro G, Gonzalez-Navajas JM, Gomez Del Pulgar EM, Such J, Sanz Y, Frances R (2016b) Bifidobacterium pseudocatenulatum CECT7765 promotes a TLR2-dependent anti-inflammatory response in intestinal lymphocytes from mice with cirrhosis. Eur J Nutr 55:197–206.  https://doi.org/10.1007/s00394-015-0837-x CrossRefPubMedGoogle Scholar
  61. Muta T, Takeshige K (2001) Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4 reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations. Eur J Biochem 268:4580–4589CrossRefGoogle Scholar
  62. Nier A, Engstler AJ, Maier IB, Bergheim I (2017) Markers of intestinal permeability are already altered in early stages of non-alcoholic fatty liver disease: studies in children. PLoS One 12:e0183282.  https://doi.org/10.1371/journal.pone.0183282 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Okada T, Kawakami S, Nakamura Y, Han KH, Ohba K, Aritsuka T, Uchino H, Shimada K, Sekikawa M, Ishii H, Fukushima M (2011) Amelioration of D-galactosamine-induced acute liver injury in rats by dietary supplementation with betaine derived from sugar beet molasses. Biosci Biotechnol Biochem 75:1335–1341.  https://doi.org/10.1271/bbb.110105 CrossRefPubMedGoogle Scholar
  64. Quigley EM, Stanton C, Murphy EF (2013) The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol 58:1020–1027.  https://doi.org/10.1016/j.jhep.2012.11.023 CrossRefPubMedGoogle Scholar
  65. Raza GS, Putaala H, Hibberd AA, Alhoniemi E, Tiihonen K, Makela KA, Herzig KH (2017) Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice. Sci Rep 7:5294.  https://doi.org/10.1038/s41598-017-05259-3 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Reddivari L, Veeramachaneni DNR, Walters WA, Lozupone C, Palmer J, Hewage MKK, Bhatnagar R, Amir A, Kennett MJ, Knight R, Vanamala JKP (2017) Perinatal bisphenol a exposure induces chronic inflammation in rabbit offspring via modulation of gut bacteria and their metabolites. mSystems 2.  https://doi.org/10.1128/mSystems.00093-17
  67. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465.  https://doi.org/10.1038/nbt.2170 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rotstein OD (2014) Circulating cytokines in predicting development of severe acute pancreatitis. Crit Care 18:575.  https://doi.org/10.1186/s13054-014-0575-0 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Rufael DW, Cohn SE (1994) Native valve endocarditis due to Corynebacterium striatum: case report and review. Clin Infect Dis 19:1054–1061CrossRefGoogle Scholar
  70. Sarao LK, Arora M (2017) Probiotics, prebiotics, and microencapsulation: a review. Crit Rev Food Sci Nutr 57:344–371.  https://doi.org/10.1080/10408398.2014.887055 CrossRefPubMedGoogle Scholar
  71. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60.  https://doi.org/10.1186/gb-2011-12-6-r60 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Shah NJ, John S (2018) Liver failure, acute on chronic. StatPearls Publishing, Treasure IslandGoogle Scholar
  73. Shen F, Zheng RD, Sun XQ, Ding WJ, Wang XY, Fan JG (2017) Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 16:375–381.  https://doi.org/10.1016/S1499-3872(17)60019-5 CrossRefPubMedGoogle Scholar
  74. Singh R, Bullard J, Kalra M, Assefa S, Kaul AK, Vonfeldt K, Strom SC, Conrad RS, Sharp HL, Kaul R (2011) Status of bacterial colonization, Toll-like receptor expression and nuclear factor-kappa B activation in normal and diseased human livers. Clin Immunol 138:41–49.  https://doi.org/10.1016/j.clim.2010.09.006 CrossRefPubMedGoogle Scholar
  75. Spruss A, Henkel J, Kanuri G, Blank D, Puschel GP, Bischoff SC, Bergheim I (2012) Female mice are more susceptible to nonalcoholic fatty liver disease: sex-specific regulation of the hepatic AMP-activated protein kinase-plasminogen activator inhibitor 1 cascade, but not the hepatic endotoxin response. Mol Med 18:1346–1355.  https://doi.org/10.2119/molmed.2012.00223 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Stanley ER, Guilbert LJ, Tushinski RJ, Bartelmez SH (1983) CSF-1--a mononuclear phagocyte lineage-specific hemopoietic growth factor. J Cell Biochem 21:151–159.  https://doi.org/10.1002/jcb.240210206 CrossRefPubMedGoogle Scholar
  77. Sugrue SP, Zieske JD (1997) ZO1 in corneal epithelium: association to the zonula occludens and adherens junctions. Exp Eye Res 64:11–20.  https://doi.org/10.1006/exer.1996.0175 CrossRefPubMedGoogle Scholar
  78. Tranah TH, Vijay GK, Ryan JM, Shawcross DL (2013) Systemic inflammation and ammonia in hepatic encephalopathy. Metab Brain Dis 28:1–5.  https://doi.org/10.1007/s11011-012-9370-2 CrossRefPubMedGoogle Scholar
  79. Velasquez-Manoff M (2015) Gut microbiome: the peacekeepers. Nature 518:S3–S11.  https://doi.org/10.1038/518S3a CrossRefPubMedGoogle Scholar
  80. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267.  https://doi.org/10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang Y, Gao LN, Cui YL, Jiang HL (2014) Protective effect of danhong injection on acute hepatic failure induced by lipopolysaccharide and D-galactosamine in mice. Evid Based Complement Alternat Med 2014:153902–153908.  https://doi.org/10.1155/2014/153902 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wiest R, Garcia-Tsao G (2005) Bacterial translocation (BT) in cirrhosis. Hepatology 41:422–433.  https://doi.org/10.1002/hep.20632 CrossRefPubMedGoogle Scholar
  83. Wiest R, Albillos A, Trauner M, Bajaj JS, Jalan R (2017) Targeting the gut-liver axis in liver disease. J Hepatol 67:1084–1103.  https://doi.org/10.1016/j.jhep.2017.05.007 CrossRefPubMedGoogle Scholar
  84. Wlodzimirow KA, Eslami S, Abu-Hanna A, Nieuwoudt M, Chamuleau RA (2012) Systematic review: acute liver failure - one disease, more than 40 definitions. Aliment Pharmacol Ther 35:1245–1256.  https://doi.org/10.1111/j.1365-2036.2012.05097.x CrossRefPubMedGoogle Scholar
  85. Woodhouse CA, Patel VC, Singanayagam A, Shawcross DL (2018) Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease. Aliment Pharmacol Ther 47:192–202.  https://doi.org/10.1111/apt.14397 CrossRefPubMedGoogle Scholar
  86. Wu J, Wang X, Cai W, Hong L, Tang Q (2010) Bifidobacterium adolescentis supplementation ameliorates parenteral nutrition-induced liver injury in infant rabbits. Dig Dis Sci 55:2814–2820.  https://doi.org/10.1007/s10620-009-1101-0 CrossRefPubMedGoogle Scholar
  87. Wu W, Lv L, Shi D, Ye J, Fang D, Guo F, Li Y, He X, Li L (2017) Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front Microbiol 8:1804.  https://doi.org/10.3389/fmicb.2017.01804 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yamada T, Kunimatsu T, Miyata K, Yabushita S, Sukata T, Kawamura S, Seki T, Okuno Y, Mikami N (2004) Enhanced rat Hershberger assay appears reliable for detection of not only (anti-)androgenic chemicals but also thyroid hormone modulators. Toxicol Sci 79:64–74.  https://doi.org/10.1093/toxsci/kfh093 CrossRefPubMedGoogle Scholar
  89. Yang XF, He Y, Li HY, Liu X, Chen H, Liu JB, Ji WJ, Wang B, Chen LN (2014) Hepatoprotective effects of erythropoietin on D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in mice. Mol Med Rep 10:555–559.  https://doi.org/10.3892/mmr.2014.2164 CrossRefPubMedGoogle Scholar
  90. Yang PJ, Yang WS, Nien HC, Chen CN, Lee PH, Yu LC, Lin MT (2016) Duodenojejunal bypass leads to altered gut microbiota and strengthened epithelial barriers in rats. Obes Surg 26:1576–1583.  https://doi.org/10.1007/s11695-015-1968-0 CrossRefPubMedGoogle Scholar
  91. Ying B, Spencer JF, Tollefson AE, Wold WSM, Toth K (2018) Male Syrian hamsters are more susceptible to intravenous infection with species C human adenoviruses than are females. Virology 514:66–78.  https://doi.org/10.1016/j.virol.2017.10.015 CrossRefPubMedGoogle Scholar
  92. You L, Casanova M, Archibeque-Engle S, Sar M, Fan LQ, Heck HA (1998) Impaired male sexual development in perinatal Sprague-Dawley and Long-Evans hooded rats exposed in utero and lactationally to p,p'-DDE. Toxicol Sci 45:162–173PubMedGoogle Scholar
  93. Yu L, Zhao XK, Cheng ML, Yang GZ, Wang B, Liu HJ, Hu YX, Zhu LL, Zhang S, Xiao ZW, Liu YM, Zhang BF, Mu M (2017) Saccharomyces boulardii administration changes gut microbiota and attenuates D-Galactosamine-induced liver injury. Sci Rep 7:1359.  https://doi.org/10.1038/s41598-017-01271-9 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zhao LN, Yu T, Lan SY, Hou JT, Zhang ZZ, Wang SS, Liu FB (2015) Probiotics can improve the clinical outcomes of hepatic encephalopathy: an update meta-analysis. Clin Res Hepatol Gastroenterol 39:674–682.  https://doi.org/10.1016/j.clinre.2015.03.008 CrossRefPubMedGoogle Scholar
  95. Zinkernagel MS, Zysset-Burri DC, Keller I, Berger LE, Leichtle AB, Largiader CR, Fiedler GM, Wolf S (2017) Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci Rep 7:40826.  https://doi.org/10.1038/srep40826 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yating Li
    • 1
    • 2
  • Longxian Lv
    • 1
    • 2
  • Jianzhong Ye
    • 1
    • 2
  • Daiqiong Fang
    • 1
    • 2
  • Ding Shi
    • 1
    • 2
  • Wenrui Wu
    • 1
    • 2
  • Qing Wang
    • 1
    • 2
  • Jingjing Wu
    • 1
    • 2
  • Liya Yang
    • 1
    • 2
  • Xiaoyuan Bian
    • 1
    • 2
  • Xianwan Jiang
    • 1
    • 2
  • Huiyong Jiang
    • 1
    • 2
  • Ren Yan
    • 1
    • 2
  • Conggao Peng
    • 1
    • 2
  • Lanjuan Li
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina

Personalised recommendations