Applied Microbiology and Biotechnology

, Volume 102, Issue 24, pp 10713–10727 | Cite as

Probiotics-fermented Massa Medicata Fermentata ameliorates weaning stress in piglets related to improving intestinal homeostasis

  • Yanbo Wang
  • Qiuhong Xie
  • Sheng Sun
  • Baojia Huang
  • Ying Zhang
  • Yun Xu
  • Shumin Zhang
  • Hongyu XiangEmail author
Applied microbial and cell physiology


Weaning stress has serious negative effects on piglets’ health and the swine industry. Probiotics-fermented Chinese herbal medicines are potential feed additives to ameliorate weaning stress. In this study, the effects of probiotics-fermented Massa Medicata Fermentata (MMFP) on intestinal homeostasis were evaluated in weaning piglets. Dietary supplementation with MMFP promoted the development of the intestinal structure and elevated the concentrations of lactic acid and short-chain fatty acids (SCFAs) in the intestinal contents and antioxidant capacities in serum. MMFP reduced the levels of inflammatory factors in the intestinal mucosa. Microbial community analysis demonstrated that MMFP led to the selective and progressive enrichment of lactic acid- and SCFA-producing bacteria along the gastrointestinal tract, in particular, OTUs corresponding to Lactobacillus, Streptococcus, Acetitomaculum, Roseburia, and Eubacterium xylanophilum group, while MMFP reduced the relative abundance of pathogenic bacteria. On the contrary, antibiotics had negative effects on intestinal histology and increased the relative abundance of pro-inflammatory bacterium, such as Marvinbryantia, Peptococcus, Turicibacter, and Blautia. Correlation analysis reflected that the bacteria enriched in MMFP group were positively correlated with enhanced intestinal homeostasis, which suggested that dietary supplementation with MMFP enhanced host intestinal homeostasis by modulating the composition of gut microbiota and the levels of beneficial SCFAs, thus ameliorating weaning stress in piglets.


Weaning stress Probiotics-fermented Massa Medicata Fermentata Microbial community Intestinal homeostasis SCFAs 



This study was funded by Jilin Province Science and Technology Institute of China (No. 20180201078YY) and Jilin Province Development and Reform Commission of China (No. 2015Y051).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The animal experiment was approved by the Institutional Animal Care and Use Committee of Jilin University (IACUC). All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

253_2018_9438_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1074 kb)


  1. Al-Sadi R, Boivin M, Ma T (2013) Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci (Landmark Ed) 14:2765–2778Google Scholar
  2. Asahara T, Shimizu K, Nomoto K, Watanuki M, Tanaka R (2009) Antibacterial effect of fermented milk containing Bifidobacterium breve, Bifidobacterium bifidum and Lactobacillus acidophilus against indigenous Escherichia coli infection in mice. Microb Ecol Health Dis 13(1):16–24. CrossRefGoogle Scholar
  3. Bose S, Han KW, Lee MJ, Kim H (2013) Intestinal protective effects of herbal-based formulations in rats against neomycin insult. Evid Based Complement Alternat Med 2013:161278–161213. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bosshard PP (2002) Turicibacter sanguinis gen. Nov., sp. nov., a novel anaerobic, Gram-positive bacterium. Int J Syst Evol Microbiol 52(4):1263–1266. CrossRefPubMedGoogle Scholar
  5. Boudry G, Peron V, Le Huerou-Luron I, Lalles JP, Seve B (2004) Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J Nutr 134(9):2256–2262. CrossRefPubMedGoogle Scholar
  6. Buffie CG, Pamer EG (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13(11):790–801. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burrough ER, Arruda BL, Plummer PJ (2017) Comparison of the luminal and mucosa-associated microbiota in the colon of pigs with and without swine dysentery. Front Vet Sci 4:139. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Candela M, Turroni S, Biagi E, Carbonero F, Rampelli S, Fiorentini C, Brigidi P (2014) Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J Gastroenterol 20(4):908–922. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Casey PG, Gardiner GE, Casey G, Bradshaw B, Lawlor PG, Lynch PB, Leonard FC, Stanton C, Ross RP, Fitzgerald GF, Hill C (2007) A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica Serovar typhimurium. Appl Environ Microbiol 73(6):1858–1863. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chatterjee S, Park S, Low K, Kong Y, Pimentel M (2007) The degree of breath methane production in IBS correlates with the severity of constipation. Am J Gastroenterol 102(4):837–841. CrossRefPubMedGoogle Scholar
  11. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HMB, Coakley M, Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor K, O'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O'Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184. CrossRefPubMedGoogle Scholar
  12. de Almada CN, Nunes de Almada C, Martinez RC, Sant'Ana Ade S (2015) Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Appl Microbiol Biotechnol 99(10):4175–4199. CrossRefPubMedGoogle Scholar
  13. Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ (2002) Roseburia intestinalis sp nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52:1615–1620. CrossRefPubMedGoogle Scholar
  14. Fan P, Tan Y, Jin K, Lin C, Xia S, Han B, Zhang F, Wu L, Ma X (2017) Supplemental lipoic acid relieves post-weaning diarrhoea by decreasing intestinal permeability in rats. J Anim Physiol Anim Nutr (Berl) 101(1):136–146. CrossRefGoogle Scholar
  15. Fang CL, Sun H, Wu J, Niu HH, Feng J (2014) Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weanling piglets. J Anim Physiol Anim Nutr (Berl) 98(4):680–685. CrossRefGoogle Scholar
  16. Feng JR, Wang F, Qiu X, McFarland LV, Chen PF, Zhou R, Liu J, Zhao Q, Li J (2017) Efficacy and safety of probiotic-supplemented triple therapy for eradication of Helicobacter pylori in children: a systematic review and network meta-analysis. Eur J Clin Pharmacol 73(10):1199–1208. CrossRefPubMedGoogle Scholar
  17. Flint HJ, Duncan SH, Scott KP, Louis P (2015) Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74(1):13–22. CrossRefPubMedGoogle Scholar
  18. Fouhse JM, Zijlstra RT, Willing BP (2016) The role of gut microbiota in the health and disease of pigs. Animal Frontiers 6(3):30–36. CrossRefGoogle Scholar
  19. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331):543–549. CrossRefPubMedGoogle Scholar
  20. Gao X, Xie Q, Liu L, Kong P, Sheng J, Xiang H (2017) Metabolic adaptation to the aqueous leaf extract of Moringa oleifera lam.-supplemented diet is related to the modulation of gut microbiota in mice. Appl Microbiol Biotechnol 101(12):5115–5130. CrossRefPubMedGoogle Scholar
  21. Greening RC, Leedle JA (1989) Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch Microbiol 151(5):399–406CrossRefGoogle Scholar
  22. Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S (2017) Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends Microbiol 25(10):851–873. CrossRefPubMedGoogle Scholar
  23. Gross M (2013) Antibiotics in crisis. Curr Biol 23(24):R1063–R1065. CrossRefPubMedGoogle Scholar
  24. Hale VL, Chen J, Johnson S, Harrington SC, Yab TC, Smyrk TC, Nelson H, Boardman LA, Druliner BR, Levin TR, Rex DK, Ahnen DJ, Lance P, Ahlquist DA, Chia N (2017) Shifts in the fecal microbiota associated with adenomatous polyps. Cancer Epidemiol Biomark Prev 26(1):85–94. CrossRefGoogle Scholar
  25. Heinritz SN, Mosenthin R, Weiss E (2013) Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev 26(2):191–209. CrossRefPubMedGoogle Scholar
  26. Henry PR, Ammerman CB, Campbell DR, Miles RD (1987) Effect of antibiotics on tissue trace mineral concentration and intestinal tract weight of broiler chicks. Poult Sci 66(6):1014–1018. CrossRefPubMedGoogle Scholar
  27. Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335. CrossRefPubMedGoogle Scholar
  28. Katouli M, Wallgren P (2005) Metabolism and population dynamics of the intestinal microflora in the growing pig. In: Holzapfel WH, Naughton PJ, Pierzynowski SG, Zabielski R, Salek E (eds) Biology of growing animals. vol 2. Elsevier, Amsterdam, pp 21–53Google Scholar
  29. Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, Stokes CR, Akkermans AD, Smidt H, de Vos WM (2006) Post-natal development of the porcine microbiota composition and activities. Environ Microbiol 8(7):1191–1199. CrossRefPubMedGoogle Scholar
  30. Lalles JP, Bosi P, Smidt H, Stokes CR (2007) Nutritional management of gut health in pigs around weaning. Proc Nutr Soc 66(2):260–268. CrossRefPubMedGoogle Scholar
  31. Lau SK, Teng JL, Leung KW, Li NK, Ng KH, Chau KY, Que TL, Woo PC, Yuen KY (2006) Bacteremia caused by Solobacterium moorei in a patient with acute proctitis and carcinoma of the cervix. J Clin Microbiol 44(8):3031–3034. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li XQ, Zhu YH, Zhang HF, Yue Y, Cai ZX, Lu QP, Zhang L, Weng XG, Zhang FJ, Zhou D, Yang JC, Wang JF (2012) Risks associated with high-dose Lactobacillus rhamnosus in an Escherichia coli model of piglet diarrhoea: intestinal microbiota and immune imbalances. PLoS One 7(7):e40666. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu Y, Huang J, Hou Y, Zhu H, Zhao S, Ding B, Yin Y, Yi G, Shi J, Fan W (2008) Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br J Nutr 100(3):552–560. CrossRefPubMedGoogle Scholar
  34. Liu T, Jia T, Chen J, Liu X, Zhao M, Liu P (2017) Analysis of microbial diversity in Shenqu with different fermentation times by PCR-DGGE. Braz J Microbiol 48(2):246–250. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Loh G, Prieto ML, O'Sullivan L, Tan SP, McLoughlin P, Hughes H, O'Donovan O, Rea MC, Kent RM, Cassidy JP, Gardiner GE, Lawlor PG (2014) Evaluation of the efficacy and safety of a marine-derived Bacillus strain for use as an in-feed probiotic for newly weaned pigs. PLoS One 9(2):e88599. CrossRefGoogle Scholar
  36. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294(1):1–8. CrossRefPubMedGoogle Scholar
  37. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672. CrossRefPubMedGoogle Scholar
  38. Mao X, Gu C, Hu H, Tang J, Chen D, Yu B, He J, Yu J, Luo J, Tian G (2016) Dietary Lactobacillus rhamnosus GG supplementation improves the mucosal barrier function in the intestine of weaned piglets challenged by porcine rotavirus. PLoS One 11(1):e0146312. CrossRefPubMedPubMedCentralGoogle Scholar
  39. McCracken BA, Spurlock ME, Roos MA, Zuckermann FA, Gaskins HR (1999) Weaning anorexia may contribute to local inflammation in the piglet small intestine. J Nutr 129(3):613–619. CrossRefPubMedGoogle Scholar
  40. Montagne L, Boudry G, Favier C, Le Huerou-Luron I, Lalles JP, Seve B (2007) Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. Br J Nutr 97(1):45–57. CrossRefPubMedGoogle Scholar
  41. Mu C, Yang Y, Su Y, Zoetendal EG, Zhu W (2017) Differences in microbiota membership along the gastrointestinal tract of piglets and their differential alterations following an early-life antibiotic intervention. Front Microbiol 8:797. CrossRefPubMedPubMedCentralGoogle Scholar
  42. National Drug Standards (1998) Chinese medicine prescription. China, pp Z19-36. WS3-B-3555-98Google Scholar
  43. National Research Council (2012) Nutrient requirements of swine: eleventh revised edition. The National Academies Press, Washington, DC.
  44. Ong DK, Mitchell SB, Barrett JS, Shepherd SJ, Irving PM, Biesiekierski JR, Smith S, Gibson PR, Muir JG (2010) Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. J Gastroenterol Hepatol 25(8):1366–1373. CrossRefPubMedGoogle Scholar
  45. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL, Shulman GI (2016) Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534(7606):213–217. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pie S, Lalles JP, Blazy F, Laffitte J, Seve B, Oswald IP (2004) Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J Nutr 134(3):641–647CrossRefGoogle Scholar
  47. Pimentel M, Lin HC, Enayati P, van den Burg B, Lee HR, Chen JH, Park S, Kong Y, Conklin J (2006) Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am J Physiol Gastrointest Liver Physiol 290(6):G1089–G1095. CrossRefPubMedGoogle Scholar
  48. Rosner BM, Schielke A, Didelot X, Kops F, Breidenbach J, Willrich N, Golz G, Alter T, Stingl K, Josenhans C, Suerbaum S, Stark K (2017) A combined case-control and molecular source attribution study of human Campylobacter infections in Germany, 2011-2014. Sci Rep 7(1):5139. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shin IS, Jeon WY, Shin HK, Cha SW, Lee MY (2013) Banhabaekchulchunma-tang, a traditional herbal formula attenuates absolute ethanol-induced gastric injury by enhancing the antioxidant status. BMC Complement Altern Med 13:170. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Soares AC, Lederman HM, Fagundes-Neto U, de Morais MB (2005) Breath methane associated with slow colonic transit time in children with chronic constipation. J Clin Gastroenterol 39(6):512–515. CrossRefPubMedGoogle Scholar
  51. Sun P, Li D, Li Z, Dong B, Wang F (2008) Effects of glycinin on IgE-mediated increase of mast cell numbers and histamine release in the small intestine. J Nutr Biochem 19(9):627–633. CrossRefPubMedGoogle Scholar
  52. Tanne JH (2012) Resistance of enterobacteria to carbapenem antibiotics is a global crisis. BMJ 344:e1646. CrossRefPubMedGoogle Scholar
  53. Valeriano VD, Balolong MP, Kang DK (2017) Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol 122(3):554–567. CrossRefPubMedGoogle Scholar
  54. Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, De Weirdt R, Kerckhof FM, Van de Wiele T (2013) Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J 7(5):949–961. CrossRefPubMedGoogle Scholar
  55. Van Gylswyck NO, van der Toorn JJTK (1985) Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber-digesting bacteria from the rumina of sheep fed corn stover. Int J Syst Bacteriol 35(3):323–326. CrossRefGoogle Scholar
  56. Varel VH, Pond WG (1992) Characteristics of a new cellulolytic Clostridium sp. isolated from pig intestinal tract. Appl Environ Microbiol 58(5):1645–1649PubMedPubMedCentralGoogle Scholar
  57. Walsh AM, Sweeney T, O'Shea CJ, Doyle DN, O'Doherty JV (2013) Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig. Br J Nutr 110(9):1630–1638. CrossRefPubMedGoogle Scholar
  58. Wang Y, Tong Q, Shou JW, Zhao ZX, Li XY, Zhang XF, Ma SR, He CY, Lin Y, Wen BY, Guo F, Fu J, Jiang JD (2017) Gut microbiota-mediated personalized treatment of hyperlipidemia using berberine. Theranostics 7(9):2443–2451. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wei B, Nie S, Meng Q, Qu Z, Shan A, Chen Z (2016) Effects of l-carnitine and/or maize distillers dried grains with solubles in diets of gestating and lactating sows on the intestinal barrier functions of their offspring. Br J Nutr 116(3):459–469. CrossRefPubMedGoogle Scholar
  60. Williams NH, Stahly TS, Zimmerman DR (1997) Effect of level of chronic immune system activation on the growth and dietary lysine needs of pigs fed from 6 to 112 kg. J Anim Sci 75:2481–2496CrossRefGoogle Scholar
  61. Xu C-T, Ma J-Y, Pan B-R, Ma L-S (1998) Strengthen international academic cooperation and exchanges: prospects in the 21st century: summary of the first world Chinese congress of digestion. World J Gastroenterol 4(6):475–482. CrossRefPubMedCentralGoogle Scholar
  62. Xu Y, Xie YB, Zhang XR, Chen C, Xiang H, Xie Q (2013) Monitoring of the bacterial and fungal biodiversity and dynamics during Massa Medicata Fermentata fermentation. Appl Microbiol Biotechnol 97(22):9647–9655. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zhang LX, Gao WY, Wang HY (2012) Review of traditional Chinese medicine processed by fermentation. Zhongguo Zhong Yao Za Zhi 37(24):3695–3700PubMedGoogle Scholar
  64. Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C, Ding J, Wang J, Wang H, Fan W, Zhao J, Meng H (2015) The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One 10(2):e0117441. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zhao H, Chu M, Huang Z, Yang X, Ran S, Hu B, Zhang C, Liang J (2017) Variations in oral microbiota associated with oral cancer. Sci Rep 7(1):11773. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life SciencesJilin UniversityChangchunPeople’s Republic of China
  2. 2.National Engineering Laboratory for AIDS Vaccine, School of Life SciencesJilin UniversityChangchunPeople’s Republic of China
  3. 3.Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life SciencesJilin UniversityChangchunPeople’s Republic of China
  4. 4.Jilin Academy of Agricultural SciencesChangchunPeople’s Republic of China

Personalised recommendations