Applied Microbiology and Biotechnology

, Volume 103, Issue 1, pp 1–8 | Cite as

Novel approaches and reasons to isolate methanotrophic bacteria with biotechnological potentials: recent achievements and perspectives

  • Miye Kwon
  • Adrian Ho
  • Sukhwan YoonEmail author


The recent drop in the price of natural gas has rekindled the interests in methanotrophs, the organisms capable of utilizing methane as the sole electron donor and carbon source, as biocatalysts for various industrial applications. As heterologous expression of the methane monooxygenases in more amenable hosts has been proven to be nearly impossible, future success in methanotroph biotechnology largely depends on securing phylogenetically and phenotypically diverse methanotrophs with relatively high growth rates. For long, isolation of methanotrophs have relied on repeated single colony picking after initial batch enrichment with methane, which is a very rigorous and time-consuming process. In this review, three unconventional isolation methods devised for facilitation of the isolation process, diversification of targeted methanotrophs, and/or screening of rapid growers are summarized. The soil substrate membrane method allowed for isolation of previously elusive methanotrophs and application of high-throughput extinction plating technique facilitated the isolation procedure. Use of a chemostat with gradually increased dilution rates proved effective in screening for the fastest-growing methanotrophs from environmental samples. Development of new isolation technologies incorporating microfluidics and single-cell techniques may lead to discovery of previously unculturable methanotrophs with unexpected metabolic potentials and thus, certainly warrant future investigation.


Methanotroph Isolation techniques Extinction culturing Soil substrate membrane system Chemostat screening 



This research was funded by the National Research Foundation of Korea (NRF) (grant number 2015M3D3A1A01064881 and 2016K2A9A2A06004870). The authors were also financially supported by the Deutsche Forschungsgemeinschaft (grant number HO6234/1-1) and the Leibniz Universität Hannover.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors (Dunfield et al. 1999)


  1. Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Benner J, de Smet D, Ho A, Kerckhof F, Vanhaecke L, Heylen K, Boon N (2015) Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants. Appl Microbiol Biotechnol 99:3609–3618. CrossRefPubMedGoogle Scholar
  3. Coleman NV, Bui NB, Holmes AJ (2006) Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 8:1228–1239. CrossRefPubMedGoogle Scholar
  4. Conrado R, Gonzalez R (2014) Envisioning the bioconversion of methane to liquid fuels. Science 343:621–623. CrossRefPubMedGoogle Scholar
  5. Culpepper MA, Rosenzweig AC (2012) Architecture and active site of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 47:483–492. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dedysh S (2011) Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2:184. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R (1999) High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol 65:1009–1014PubMedPubMedCentralGoogle Scholar
  8. Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239. CrossRefPubMedGoogle Scholar
  9. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882. CrossRefPubMedGoogle Scholar
  10. Dunfield PF, Belova SE, Vorobev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664. CrossRefPubMedGoogle Scholar
  11. Farhan Ul Haque M, Crombie AT, Ensminger SA, Baciu C, Murrell JC (2018) Facultative methanotrophs are abundant at terrestrial natural gas seeps. Microbiome 6:118. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ferrari BC, Binnerup SJ, Gillings M (2005) Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol 71:8714–8720. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ferrari BC, Winsley T, Gillings M, Binnerup S (2008) Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat Protoc 3:1261–1269. CrossRefPubMedGoogle Scholar
  14. Ganendra G, Mercado-Garcia D, Hernandez-Sanabria E, Peiren N, De Campeneere S, Ho A, Boon N (2015) Biofiltration of methane from ruminants gas effluent using autoclaved aerated concrete as the carrier material. Chem Eng J 277:318–323. CrossRefGoogle Scholar
  15. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  16. Hatzenpichler R (2012) Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 78:7501–7510. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Haynes CA, Gonzalez R (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 10:331–339. CrossRefPubMedGoogle Scholar
  18. He J, Ritalahti KM, Yang K-L, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65. CrossRefPubMedGoogle Scholar
  19. Henard CA, Smith H, Dowe N, Kalyuzhnaya MG, Pienkos PT, Guarnieri MT (2016) Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci Rep 6:21585. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K (2011) Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 61:2646–2653. CrossRefPubMedGoogle Scholar
  21. Hirayama H, Fuse H, Abe M, Miyazaki M, Nakamura T, Nunoura T, Furushima Y, Yamamoto H, Takai K (2013) Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. Int J Syst Evol Microbiol 63:1073–1082. CrossRefPubMedGoogle Scholar
  22. Ho A, Kerckhof F, Luke C, Reim A, Krause S, Boon N, Bodelier PLE (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep 5:335–345. CrossRefPubMedGoogle Scholar
  23. Ho A, de Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, Heylen K, Boon N (2014) The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J 8:1945–1948. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ho A, Angel R, Veraart AJ, Daebeler A, Jia Z, Kim SY, Kerckhof F, Boon N, Bodelier PLE (2016) Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front Microbiol 7:1285. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hoefman S, van der Ha D, De Vos P, Boon N, Heylen K (2012) Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria. Microb Biotechnol 5:368–378. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hol FJH, Dekker C (2014) Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science 346:6208. CrossRefGoogle Scholar
  27. Hwang IY, Nguyen AD, Nguyen TT, Nguyen LT, Lee OK, Lee EY (2018) Biological conversion of methane to chemicals and fuels: technical challenges and issues. Appl Microbiol Biotechnol 102:3071–3080. CrossRefPubMedGoogle Scholar
  28. Ishii S, Tago K, Senoo K (2010) Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Appl Microbiol Biotechnol 86:1281–1292. CrossRefPubMedGoogle Scholar
  29. Islam T, Jensen S, Reigstad LJ, Larsen Ø, Birkeland N-K (2008) Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci 105:300–304. CrossRefPubMedGoogle Scholar
  30. Jahng D, Wood TK (1994) Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl Environ Microbiol 60:2473–2482PubMedPubMedCentralGoogle Scholar
  31. Jahng D, Kim CS, Hanson RS, Wood TK (1996) Optimization of trichloroethylene degradation using soluble methane monooxygenase of Methylosinus trichosporium OB3b expressed in recombinant bacteria. Biotechnol Bioeng 51:349–359.;2-H CrossRefPubMedGoogle Scholar
  32. Jannasch HW (1969) Estimations of bacterial growth rates in natural waters. J Bacteriol 99:156–160PubMedPubMedCentralGoogle Scholar
  33. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing X-H (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49:277–288. CrossRefGoogle Scholar
  34. Jiang C-Y, Dong L, Zhao J-K, Hu X, Shen C, Qiao Y, Zhang X, Wang Y, Ismagilov RF, Liu S-J, Du W (2016) High-throughput single-cell cultivation on microfluidic streak plates. Appl Environ Microbiol 82:2210–2218. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Joo HS, Ndegwa PM, Heber AJ, Ni JQ, Bogan BW, Ramirez-Dorronsoro JC, Cortus E (2015) Greenhouse gas emissions from naturally ventilated freestall dairy barns. Atmos Environ 102:384–392. CrossRefGoogle Scholar
  36. Kalyuzhnaya MG, Yang S, Rozova ON, Bringel F, Smalley NE, Clubb J, Konopka M, Orphan VJ, Beck D, Trotsenko YA, Vuilleumier S, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in methanotrophic bacterium. Nat Commun 4:2785. CrossRefPubMedGoogle Scholar
  37. Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152. CrossRefPubMedGoogle Scholar
  38. Kim J, Kim DD, Yoon S (2018) Rapid isolation of fast-growing methanotrophs from environmental samples using continuous cultivation with gradually increased dilution rates. Appl Microbiol Biotechnol 102:5707–5715. CrossRefGoogle Scholar
  39. Kip N, Ouyang W, van Winden J, Raghoebarsing A, van Niftrik L, Pol A, Pan Y, Bodrossy L, van Donselaar EG, Reichart G-J, Jetten MSM, Sinninghe Damsté JS, Op den Camp HJM (2011) Detection, isolation, and characterization of acidophilic methanotrophs from sphagnum mosses. Appl Environ Microbiol 77:5643–5654. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Krause SMB, Johnson T, Karunaratne YS, Fu Y, Beck DAC, Chistoserdova L, Lidstrom ME (2017) Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proc Natl Acad Sci 114:358–363. CrossRefPubMedGoogle Scholar
  41. Kumaresan D, Stephenson J, Doxey AC, Bandukwala H, Brooks E, Hillebrand-Voiculescu A, Whiteley AS, Murrell JC (2018) Aerobic proteobacterial methylotrophs in Movile Cave: genomic and metagenomic analyses. Microbiome 6:1. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479. CrossRefPubMedGoogle Scholar
  43. Lidstrom ME (1988) Isolation and characterization of marine methanotrophs. Antonie Leeuwenhoek 54:189–199. CrossRefPubMedGoogle Scholar
  44. Limbri H, Gunawan C, Thomas T, Smith A, Scott J, Rosche B (2014) Coal-packed methane biofilter for mitigation of greenhouse gas emissions from coal mine ventilation air. PLoS One 9:e94641. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Little CD, Palumbo AV, Herbes SE, Lidstrom ME, Tyndall RL, Gilmer PJ (1988) Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl Environ Microbiol 54:951–956PubMedPubMedCentralGoogle Scholar
  46. Löffler FE, Ritalahti KM, Zinder SH (2013) Dehalococcoides and reductive dechlorination of chlorinated solvents. In: Stroo HF, Leeson A, Ward CH (eds) Bioaugmentation for groundwater remediation. Springer New York, New York, pp 39–88CrossRefGoogle Scholar
  47. Lu X, Gu W, Zhao L, Farhan Ul Haque M, DiSpirito AA, Semrau JD, Gu B (2017) Methylmercury uptake and degradation by methanotrophs. Sci Adv 3:e1700041. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ma L, Kim J, Hatzenpichler R, Karymov MA, Hubert N, Hanan IM, Chang EB, Ismagilov RF (2014) Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in human microbiome project's most wanted taxa. Proc Natl Acad Sci 111:9768–9773. CrossRefPubMedGoogle Scholar
  49. Mahmoud AMA (2017) Biological conversion process of methane into methanol using mixed culture methanotrophic bacteria enriched from activated sludge system. Dissertation, York universityGoogle Scholar
  50. Marshall CW, LaBelle EV, May HD (2013) Production of fuels and chemicals from waste by microbiomes. Curr Opin Biotechnol 24:391–397. CrossRefPubMedGoogle Scholar
  51. Murrell JC, Gilbert B, McDonald IR (2000a) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332. CrossRefPubMedGoogle Scholar
  52. Murrell JC, McDonald IR, Gilbert B (2000b) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8:221–225. CrossRefPubMedGoogle Scholar
  53. Ngwabie NM, Jeppsson KH, Nimmermark S, Swensson C, Gustafsson G (2009) Multi-location measurements of greenhouse gases and emission rates of methane and ammonia from a naturally-ventilated barn for dairy cows. Biosyst Eng 103:68–77. CrossRefGoogle Scholar
  54. Osborne CD, Haritos VS (2018) Horizontal gene transfer of three co-inherited methane monooxygenase systems gave rise to methanotrophy in the Proteobacteria. Mol Phylogenet Evol 129:171–181. CrossRefPubMedGoogle Scholar
  55. Oshkin IY, Beck DAC, Lamb AE, Tchesnokova V, Benuska G, McTaggart TL, Kalyuzhnaya MG, Dedysh SN, Lidstrom ME, Chistoserdova L (2015) Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J 9:1119–1129. CrossRefPubMedGoogle Scholar
  56. Oswald K, Graf JS, Littmann S, Tienken D, Brand A, Wehrli B, Albertsen M, Daims H, Wagner M, Kuypers MMM, Schubert CJ, Milucka J (2017) Crenothrix are major methane consumers in stratified lakes. ISME J 11:2124–2140. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pieja AJ, Morse MC, Cal AJ (2017) Methane to bioproducts: the future of the bioeconomy? Curr Opin Chem Biol 41:123–131. CrossRefPubMedGoogle Scholar
  58. Puri AW, Owen S, Chu F, Chavkin T, Beck DAC, Kalyuzhnaya MG, Lidstrom ME (2015) Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl Environ Microbiol 81:1775–1781. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rocha-Rios J, Quijano G, Thalasso F, Revah S, Muñoz R (2011) Methane biodegradation in a two-phase partition internal loop airlift reactor with gas recirculation. J Chem Technol Biotechnol 86:353–360. CrossRefGoogle Scholar
  60. Rostkowski KH, Pfluger AR, Criddle CS (2013) Stoichiometry and kinetics of the PHB-producing type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresour Technol 132:71–77. CrossRefPubMedGoogle Scholar
  61. Semrau JD (2011) Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol 2:209. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Semrau JD, DiSpirito A, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531. CrossRefPubMedGoogle Scholar
  63. Semrau JD, DiSpirito AA, Gu W, Yoon S (2018) Metals and methanotrophy. Appl Environ Microbiol 84:e02289. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, Grasby SE, Strack M, Dunfield PF (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16:1867–1878. CrossRefPubMedGoogle Scholar
  65. Song Y, Yin H, Huang WE (2016) Raman activated cell sorting. Curr Opin Chem Biol 33:1–8. CrossRefPubMedGoogle Scholar
  66. Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci 103:2363–2367. CrossRefPubMedGoogle Scholar
  67. Strong PG, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018. CrossRefPubMedGoogle Scholar
  68. Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP (2016) A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour Technol 215:314–323. CrossRefPubMedGoogle Scholar
  69. Svenning MM, Wartiainen I, Hestnes AG, Binnerup SJ (2003) Isolation of methane oxidising bacteria from soil by use of a soil substrate membrane system. FEMS Microbiol Ecol 44:347–354. CrossRefPubMedGoogle Scholar
  70. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463. CrossRefPubMedGoogle Scholar
  71. Wang Y, Huang WE, Cui L, Wagner M (2016) Single cell stable isotope probing in microbiology using raman microspectroscopy. Curr Opin Biotechnol 41:34–42. CrossRefPubMedGoogle Scholar
  72. Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65:4887–4897PubMedPubMedCentralGoogle Scholar
  73. Yan X, Chu F, Puri AW, Fu Y, Lidstrom ME (2016) Electroporation-based genetic manipulation in type I methanotrophs. Appl Environ Microbiol 82:2062–2069. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yoon S, Carey J, Semrau J (2009) Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Appl Microbiol Biotechnol 83:949–956. CrossRefPubMedGoogle Scholar
  75. Zhang D, Berry JP, Zhu D, Wang Y, Chen Y, Jiang B, Huang S, Langford H, Li G, Davison PA, Xu J, Aries E, Huang WE (2014) Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. ISME J 9:603–614. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zúñiga C, Morales M, Le Borgne S, Revah S (2011) Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater 190:876–882. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
  2. 2.Institute for MicrobiologyLeibniz Universität HannoverHannoverGermany

Personalised recommendations