Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 24, pp 10377–10391 | Cite as

Microbial forensics: new breakthroughs and future prospects

  • Manuela Oliveira
  • António Amorim
Mini-Review

Abstract

Recent advances in genetic data generation, through massive parallel sequencing (MPS), storage and analysis have fostered significant progresses in microbial forensics (or forensic microbiology). Initial applications in circumstances of biocrime, bioterrorism and epidemiology are now accompanied by the prospect of using microorganisms (i) as ancillary evidence in criminal cases; (ii) to clarify causes of death (e.g., drownings, toxicology, hospital-acquired infections, sudden infant death and shaken baby syndromes); (iii) to assist human identification (skin, hair and body fluid microbiomes); (iv) for geolocation (soil microbiome); and (v) to estimate postmortem interval (thanatomicrobiome and epinecrotic microbial community). When compared with classical microbiological methods, MPS offers a diverse range of advantages and alternative possibilities. However, prior to its implementation in the forensic context, critical efforts concerning the elaboration of standards and guidelines consolidated by the creation of robust and comprehensive reference databases must be undertaken.

Keywords

Criminal investigation Genetics Massive parallel sequencing Microbial forensics Microbiome 

Notes

Funding

This study was funded by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Akehurst C (1998) Outbreak of hepatitis C associated with two hospitals in Spain. Weekly releases (1997–2007) 2(20):1217Google Scholar
  2. Allard MW, Wilson M, Brown EW (2017) Genetic and genomic methods of microbial taxonomic assignment. In: Amorim A, Budowle B (eds) Handbook of forensic genetics: biodiversity and heredity in civil and criminal investigation. World Sci, New Jersey, pp 535–560Google Scholar
  3. Amorim A (2010) Introduction to the special issue on forensic genetics: non-human DNA. Open Forensic Sci J 3:6–8.  https://doi.org/10.2174/1874402801003010006 Google Scholar
  4. Arenas M, Pereira F, Oliveira M, Pinto N, Lopes AM, Gomes V, Carracedo A, Amorim A (2017) Forensic genetics and genomics: much more than just a human affair. PLoS Genet 13(9):e1006960.  https://doi.org/10.1371/journal.pgen.1006960 PubMedPubMedCentralGoogle Scholar
  5. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174.  https://doi.org/10.1038/nature09944 PubMedPubMedCentralGoogle Scholar
  6. Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, Alabdullatif ZN, Assad M, Almulhim A, Makhdoom H (2013) Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med 369(5):407–416.  https://doi.org/10.1056/NEJMx130042 PubMedPubMedCentralGoogle Scholar
  7. Aylward RB, Alwan A (2014) Polio in Syria. Lancet 383(9916):489–491.  https://doi.org/10.1016/S0140-6736(14)60132-X PubMedGoogle Scholar
  8. Ballantyne B (2013) The forensic diagnosis of acute cyanide poisoning. In: Ballantyne B (ed) Forensic toxicology. John Wright and Sons Limited, Bristol, pp 99–113Google Scholar
  9. Ballantyne B, Bright J, Williams P (1974) The post-mortem rate of transformation of cyanide. Forensic Sci 3:71–76.  https://doi.org/10.1016/0300-9432(74)90009-0 PubMedGoogle Scholar
  10. Banaschak S, Werwein M, Brinkmann B, Hauber I (2000) Human immunodeficiency virus type 1 infection after sexual abuse: value of nucleic acid sequence analysis in identifying the offender. Clin Infect Dis 31(4):1098–1100.  https://doi.org/10.1086/318152 PubMedGoogle Scholar
  11. Bano H, Mohamed O, Bensaheb F, Behl S, Nazir M (2015) Evaluating emerging technologies applied in forensic analysis. Int J Eng Res Sci Technol 4(3):146–171Google Scholar
  12. Blaser MJ (2010) Harnessing the power of the human microbiome. Proc Natl Acad Sci U S A 107(14):6125–6126.  https://doi.org/10.1073/pnas.1002112107 PubMedPubMedCentralGoogle Scholar
  13. Borges V, Nunes A, Sampaio D, Vieira L, Gomes JP (2016) Phylogenomic characterization of the causative strain of one of the largest worldwide outbreaks of legionnaires’ disease occurred in Portugal in 2014. In: 11th international meeting on microbial epidemiological markers (IMMEM XI), 9–12 March 2016Google Scholar
  14. Børsting C, Morling N (2015) Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 18:78–89.  https://doi.org/10.1016/j.fsigen.2015.02.002 PubMedGoogle Scholar
  15. Bosch X (1998) Hepatitis C outbreak astounds Spain. Lancet 351(9113):1415.  https://doi.org/10.1016/S0140-6736(05)79465-4 Google Scholar
  16. Boumba VA, Economou V, Kourkoumelis N, Gousia P, Papadopoulou C, Vougiouklakis T (2012) Microbial ethanol production: experimental study and multivariate evaluation. Forensic Sci Int 215(1–3):189–198.  https://doi.org/10.1016/j.forsciint.2011.03.003 PubMedGoogle Scholar
  17. Boumba VA, Kourkoumelis N, Gousia P, Economou V, Papadopoulou C, Vougiouklakis T (2013) Modeling microbial ethanol production by E. coli under aerobic/anaerobic conditions: applicability to real postmortem cases and to postmortem blood derived microbial cultures. Forensic Sci Int 232(1–3):191–198.  https://doi.org/10.1016/j.forsciint.2013.07.021 PubMedGoogle Scholar
  18. Boumba VA, Ziavrou KS, Vougiouklakis T (2008) Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyses. Forensic Sci Int 174(2):133–151.  https://doi.org/10.1016/j.forsciint.2007.03.018 PubMedGoogle Scholar
  19. Boyce JM, Havill NL, Dumigan DG, Golebiewski M, Balogun O, Rizvani R (2009) Monitoring the effectiveness of hospital cleaning practices by use of an adenosine triphosphate bioluminescence assay. Infect Control Hosp Epidemiol 30(7):678–684.  https://doi.org/10.1086/598243 PubMedGoogle Scholar
  20. Brooke JS, Annand JW, Angela Hammer M, Shulman ST (2009) Investigation of bacterial pathogens on 70 frequently used environmental surfaces in a large urban US university. J Environ Health 71(6):17PubMedGoogle Scholar
  21. Brooks EG, Gill JR, Buchsbaum R, Utley S, Sathyavagiswaran L, Peterson DC (2015) Testing for infectious diseases in sudden unexpected infant death: a survey of medical examiner and coroner offices in the United States. J Pediatr 167(1):178–182.e1.  https://doi.org/10.1016/j.jpeds.2015.04.007 PubMedGoogle Scholar
  22. Brown AG (2006) The use of forensic botany and geology in war crimes investigations in NE Bosnia. Forensic Sci Int 163(3):204–210.  https://doi.org/10.1016/j.forsciint.2006.05.025 PubMedGoogle Scholar
  23. Bryers JD (2008) Medical biofilms. Biotechnol Bioeng 100(1):1–18.  https://doi.org/10.1002/bit.21838 PubMedPubMedCentralGoogle Scholar
  24. Budowle B, Churchill JD, King JL (2017) The next state-of-the-art forensic genetics technology: massively parallel sequencing. In: Amorim A, Budowle B (eds) Handbook of forensic genetics: biodiversity and heredity in civil and criminal investigation. World Sci, New Jersey, pp 249–291Google Scholar
  25. Budowle B, Connell ND, Bielecka-Oder A, Colwell RR, Corbett CR, Fletcher J, Forsman M, Kadavy DR, Markotic A, Morse SA (2014) Validation of high throughput sequencing and microbial forensics applications. Investig Genet 5(1):9.  https://doi.org/10.1186/2041-2223-5-9 PubMedPubMedCentralGoogle Scholar
  26. Budowle B, Johnson MD, Fraser CM, Leighton TJ, Murch RS, Chakraborty R (2005) Genetic analysis and attribution of microbial forensics evidence. Crit Rev Microbiol 31(4):233–254.  https://doi.org/10.1080/10408410500304082 PubMedGoogle Scholar
  27. Budowle B, Schutzer SE, Burans JP, Beecher DJ, Cebula TA, Chakraborty R, Cobb WT, Fletcher J, Hale ML, Harris RB (2006) Quality sample collection, handling, and preservation for an effective microbial forensics program. Appl Environ Microbiol 72(10):6431–6438.  https://doi.org/10.1128/AEM.01165-06 PubMedPubMedCentralGoogle Scholar
  28. Butler JM (2015) The future of forensic DNA analysis. Philos Trans R Soc Lond Ser B Biol Sci 370(1674).  https://doi.org/10.1098/rstb.2014.0252 Google Scholar
  29. Butzbach DM (2010) The influence of putrefaction and sample storage on post-mortem toxicology results. Forensic Sci Med Pathol 6(1):35–45.  https://doi.org/10.1007/s12024-009-9130-8 PubMedGoogle Scholar
  30. Butzbach DM, Stockham PC, Kobus HJ, Noel Sims D, Byard RW, Lokan RJ, Stewart Walker G (2013) Bacterial degradation of risperidone and paliperidone in decomposing blood. J Forensic Sci 58(1):90–100.  https://doi.org/10.1111/j.1556-4029.2012.02280.x PubMedGoogle Scholar
  31. Byard RW (2004a) Lessons to be learnt from the Sally Clark case. Aust J Forensic Sci 36(1):3–10Google Scholar
  32. Byard RW (2004b) Unexpected infant death: lessons from the Sally Clark case. Med J Aust 181(1):52–54PubMedGoogle Scholar
  33. Byard RW, Butzbach DM (2012) Issues in the interpretation of postmortem toxicology. Forensic Sci Med Pathol 8(3):205–207.  https://doi.org/10.1007/s12024-011-9278-x PubMedGoogle Scholar
  34. Caddy B, Stead A (1978) Three cases of poisoning involving the drug phenelzine. J Forensic Sci Soc 18(3–4):207–208PubMedGoogle Scholar
  35. Calder IM (1984) An evaluation of the diatom test in deaths of professional divers. Med Sci Law 24(1):41–46.  https://doi.org/10.1177/002580248402400107 PubMedGoogle Scholar
  36. Carter DO (2017) Forensic microbiology. John Wiley & SonsGoogle Scholar
  37. Castle JW, Butzbach DM, Walker GS, Lenehan CE, Reith F, Kirkbride KP (2017) Microbial impacts in postmortem toxicology. In: Carter DO, Tomberlin JK, Benbow ME, Metcalf JL (eds) Forensic Microbiology John Wiley & Sons, p 212.  https://doi.org/10.1002/9781119062585.ch9 Google Scholar
  38. Cenciarelli O, Pietropaoli S, Malizia A, Carestia M, D’Amico F, Sassolini A, Di Giovanni D, Rea S, Gabbarini V, Tamburrini A (2015) Ebola virus disease 2013-2014 outbreak in west Africa: an analysis of the epidemic spread and response. Int J Microbiol 2015:769121.  https://doi.org/10.1155/2015/769121 PubMedPubMedCentralGoogle Scholar
  39. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13(4):260–270.  https://doi.org/10.1038/nrg3182 PubMedPubMedCentralGoogle Scholar
  40. Choi A, Shin K-J, Yang WI, Lee HY (2014) Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA. Int J Legal Med 128(1):33–41.  https://doi.org/10.1007/s00414-013-0918-4 PubMedGoogle Scholar
  41. Ciesielski C, Marianos D, Ou C-Y, Dumbaugh R, Witte J, Berkelman R, Gooch B, Myers G, Luo C-C, Schochetman G (1992) Transmission of human immunodeficiency virus in a dental practice. Ann Intern Med 116(10):798–805PubMedGoogle Scholar
  42. Clarke TH, Gomez A, Singh H, Nelson KE, Brinkac LM (2017) Integrating the microbiome as a resource in the forensics toolkit. Forensic Sci Int Genet 30:141–147.  https://doi.org/10.1016/j.fsigen.2017.06.008 PubMedGoogle Scholar
  43. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697.  https://doi.org/10.1126/science.1177486 PubMedPubMedCentralGoogle Scholar
  44. DeBruyn JM, Hauther KA (2017) Postmortem succession of gut microbial communities in deceased human subjects. PeerJ 5:e3437.  https://doi.org/10.7717/peerj.3437 PubMedPubMedCentralGoogle Scholar
  45. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science 359(6373):320–325.  https://doi.org/10.1126/science.aap9516 PubMedGoogle Scholar
  46. Demanèche S, Schauser L, Dawson L, Franqueville L, Simonet P (2017) Microbial soil community analyses for forensic science: application to a blind test. Forensic Sci Int 270:153–158.  https://doi.org/10.1016/j.forsciint.2016.12.004 PubMedGoogle Scholar
  47. Díaz-Palma P, Alucema A, Hayashida G, Maidana N (2009) Development and standardization of a microalgae test for determining deaths by drowning. Forensic Sci Int 184(1–3):37–41.  https://doi.org/10.1016/j.forsciint.2008.11.015 PubMedGoogle Scholar
  48. Dickson GC, Poulter RT, Maas EW, Probert PK, Kieser JA (2011) Marine bacterial succession as a potential indicator of postmortem submersion interval. Forensic Sci Int 209(1–3):1–10.  https://doi.org/10.1016/j.forsciint.2010.10.016 PubMedGoogle Scholar
  49. Ding T, Schloss PD (2014) Dynamics and associations of microbial community types across the human body. Nature 509(7500):357–360.  https://doi.org/10.1038/nature13178 PubMedPubMedCentralGoogle Scholar
  50. Drummer OH (2004) Postmortem toxicology of drugs of abuse. Forensic Sci Int 142(2–3):101–113.  https://doi.org/10.1016/j.forsciint.2004.02.013 PubMedGoogle Scholar
  51. Duncan JR, Byard RW (2018) Sudden infant death syndrome: an overview. In: Duncan JR, Byard RW (eds) SIDS sudden infant and early childhood death: the past, the present and the future. University of Adelaide Press, Adelaide, pp 15–50Google Scholar
  52. Dyer C (2005) Pathologist in Sally Clark case suspended from court work. BMJ 330(7504):1347.  https://doi.org/10.1136/bmj.330.7504.1347 PubMedPubMedCentralGoogle Scholar
  53. Elliott SP (2004) Further evidence for the presence of GHB in postmortem biological fluid: implications for the interpretation of findings. J Anal Toxicol 28(1):20–26PubMedGoogle Scholar
  54. Elliott S, Lowe P, Symonds A (2004) The possible influence of micro-organisms and putrefaction in the production of GHB in post-mortem biological fluid. Forensic Sci Int 139(2–3):183–190.  https://doi.org/10.1016/j.forsciint.2003.10.018 PubMedGoogle Scholar
  55. Faria NR, Azevedo RDSDS, Kraemer MUG, Souza R, Cunha MS, Hill SC, Thézé J, Bonsall MB, Bowden TA, Rissanen I, Rocco IM, Nogueira JS, Maeda AY, Vasami FGDS, Macedo FLL, Suzuki A, Rodrigues SG, Cruz ACR, Nunes BT, Medeiros DBA, Rodrigues DSG, Queiroz ALN, da Silva EVP, Henriques DF, da Rosa EST, de Oliveira CS, Martins LC, Vasconcelos HB, Casseb LMN, Simith DB, Messina JP, Abade L, Lourenço J, Alcantara LCJ, de Lima MM, Giovanetti M, Hay SI, de Oliveira RS, Lemos PDS, de Oliveira LF, de Lima CPS, da Silva SP, de Vasconcelos JM, Franco L, Cardoso JF, Vianez-Júnior JLDSG, Mir D, Bello G, Delatorre E, Khan K, Creatore M, Coelho GE, de Oliveira WK, Tesh R, Pybus OG, Nunes MRT, Vasconcelos PFC (2016) Zika virus in the Americas: early epidemiological and genetic findings. Science 352(6283):345–349.  https://doi.org/10.1126/science.aaf5036 PubMedPubMedCentralGoogle Scholar
  56. Fernández-Rodríguez A, Ballesteros S, De Ory F, Echevarria J, Alvarez-Lafuente R, Vallejo G, Gómez J (2006) Virological analysis in the diagnosis of sudden children death: a medico-legal approach. Forensic Sci Int 161(1):8–14.  https://doi.org/10.1016/j.forsciint.2005.10.012 PubMedGoogle Scholar
  57. Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 105(46):17994–17999.  https://doi.org/10.1073/pnas.0807920105 PubMedPubMedCentralGoogle Scholar
  58. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R (2010) Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A 107(14):6477–6481.  https://doi.org/10.1073/pnas.1000162107 PubMedPubMedCentralGoogle Scholar
  59. Finley SJ, Benbow ME, Javan GT (2015) Potential applications of soil microbial ecology and next-generation sequencing in criminal investigations. Appl Soil Ecol 88:69–78.  https://doi.org/10.1016/j.apsoil.2015.01.001 Google Scholar
  60. Finley SJ, Pechal JL, Benbow ME, Robertson B, Javan GT (2016) Microbial signatures of cadaver gravesoil during decomposition. Microb Ecol 71(3):524–529.  https://doi.org/10.1007/s00248-015-0725-1 PubMedGoogle Scholar
  61. Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, Huttenhower C (2015) Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A 112(22):E2930–E2938.  https://doi.org/10.1073/pnas.1423854112 PubMedPubMedCentralGoogle Scholar
  62. Gao Z, Tseng C-H, Pei Z, Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A 104(8):2927–2932.  https://doi.org/10.1073/pnas.0607077104 PubMedPubMedCentralGoogle Scholar
  63. Garcia-Pardo M, Platero Armero J, De la Rubia Orti J (2018) Anxiolytics and antidepressants: problem or solution. J Neurol Neurosci 9(1):247.  https://doi.org/10.21767/2171-6625.1000247: Google Scholar
  64. Gardy JL, Johnston JC, Sui SJH, Cook VJ, Shah L, Brodkin E, Rempel S, Moore R, Zhao Y, Holt R (2011) Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364(8):730–739.  https://doi.org/10.1056/NEJMoa1003176 PubMedGoogle Scholar
  65. Gerostamoulos D, Beyer J, Staikos V, Tayler P, Woodford N, Drummer OH (2012) The effect of the postmortem interval on the redistribution of drugs: a comparison of mortuary admission and autopsy blood specimens. Forensic Sci Med Pathol 8(4):373–379.  https://doi.org/10.1007/s12024-012-9341-2 PubMedGoogle Scholar
  66. Giampaoli S, DeVittori E, Valeriani F, Berti A, Romano Spica V (2017) Informativeness of NGS analysis for vaginal fluid identification. J Forensic Sci 62(1):192–196.  https://doi.org/10.1111/1556-4029.13222 PubMedGoogle Scholar
  67. Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA ‘fingerprints’. Nature 318(6046):577PubMedGoogle Scholar
  68. Gjelsvik B, Heyerdahl F, Lunn D, Hawton K (2014) Change in access to prescribed medication following an episode of deliberate self-poisoning: a multilevel approach. PLoS One 9(5):e98086.  https://doi.org/10.1371/journal.pone.0098086 PubMedPubMedCentralGoogle Scholar
  69. González-Candelas F (2017) Molecular epidemiology and evolution concepts in microbial forensics. In: Amorim A, Budowle B (eds) Handbook of forensic genetics: biodiversity and heredity in civil and criminal investigation. World Sci, New Jersey, pp 561–582Google Scholar
  70. González-Candelas F, Bracho MA, Wróbel B, Moya A (2013) Molecular evolution in court: analysis of a large hepatitis C virus outbreak from an evolving source. BMC Biol 11(1):76.  https://doi.org/10.1186/1741-7007-11-76 PubMedPubMedCentralGoogle Scholar
  71. Grad YH, Lipsitch M, Feldgarden M, Arachchi HM, Cerqueira GC, Fitzgerald M, Godfrey P, Haas BJ, Murphy CI, Russ C, Sykes S, Walker BJ, Wortman JR, Young S, Zeng Q, Abouelleil A, Bochicchio J, Chauvin S, Desmet T, Gujja S, McCowan C, Montmayeur A, Steelman S, Frimodt-Møller J, Petersen AM, Struve C, Krogfelt KA, Bingen E, Weill FX, Lander ES, Nusbaum C, Birren BW, Hung DT, Hanage WP (2012) Genomic epidemiology of the Escherichia coli O104: H4 outbreaks in Europe, 2011. Proc Natl Acad Sci U S A 109(8):3065–3070.  https://doi.org/10.1073/pnas.1121491109 PubMedPubMedCentralGoogle Scholar
  72. Grantham NS, Reich BJ, Pacifici K, Laber EB, Menninger HL, Henley JB, Barberán A, Leff JW, Fierer N, Dunn RR (2015) Fungi identify the geographic origin of dust samples. PLoS One 10(4):e0122605.  https://doi.org/10.1371/journal.pone.0122605 PubMedPubMedCentralGoogle Scholar
  73. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Comparative Sequencing Program NISC, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA (2009) Topographical and temporal diversity of the human skin microbiome. Science 324(5931):1190–1192.  https://doi.org/10.1126/science.1171700 PubMedPubMedCentralGoogle Scholar
  74. Gunn A, Pitt SJ (2012) Review paper microbes as forensic indicators. Trop Biomed 29(3):311–330Google Scholar
  75. Han E, Kim E, Hong H, Jeong S, Kim J, In S, Chung H, Lee S (2012) Evaluation of postmortem redistribution phenomena for commonly encountered drugs. Forensic Sci Int 219(1–3):265–271.  https://doi.org/10.1016/j.forsciint.2012.01.016 PubMedGoogle Scholar
  76. Hanssen EN, Avershina E, Rudi K, Gill P, Snipen L (2017) Body fluid prediction from microbial patterns for forensic application. Forensic Sci Int Genet 30:10–17.  https://doi.org/10.1016/j.fsigen.2017.05.009 PubMedGoogle Scholar
  77. Hauther KA, Cobaugh KL, Jantz LM, Sparer TE, DeBruyn JM (2015) Estimating time since death from postmortem human gut microbial communities. J Forensic Sci 60(5):1234–1240.  https://doi.org/10.1111/1556-4029.12828 PubMedGoogle Scholar
  78. Hawkins AK, O'Doherty KC (2011) “Who owns your poop?”: insights regarding the intersection of human microbiome research and the ELSI aspects of biobanking and related studies. BMC Med Genet 4(1):72.  https://doi.org/10.1186/1755-8794-4-72 Google Scholar
  79. Hawksworth DL, Wiltshire PE (2011) Forensic mycology: the use of fungi in criminal investigations. Forensic Sci Int 206(1–3):1–11.  https://doi.org/10.1016/j.forsciint.2010.06.012 PubMedGoogle Scholar
  80. He F, Huang D, Liu L, Shu X, Yin H, Li X (2008) A novel PCR–DGGE-based method for identifying plankton 16S rDNA for the diagnosis of drowning. Forensic Sci Int 176(2–3):152–156.  https://doi.org/10.1016/j.forsciint.2007.08.005 PubMedGoogle Scholar
  81. Heimesaat MM, Boelke S, Fischer A, Haag L-M, Loddenkemper C, Kühl AA, Göbel UB, Bereswill S (2012) Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS One 7(7):e40758.  https://doi.org/10.1371/journal.pone.0040758 PubMedPubMedCentralGoogle Scholar
  82. Hendriksen RS, Price LB, Schupp JM, Gillece JD, Kaas RS, Engelthaler DM, Bortolaia V, Pearson T, Waters AE, Upadhyay BP, Shrestha SD, Adhikari S, Shakya G, Keim PS, Aarestrup FM (2011) Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. MBio 2(4):e00157–e00111.  https://doi.org/10.1128/mBio.00157-11 PubMedPubMedCentralGoogle Scholar
  83. Herman ES (2006) The approved narrative of the Srebrenica massacre. Int J Semiot Law 19(4):409–434.  https://doi.org/10.1007/s11196-006-9031-z Google Scholar
  84. Herzig CTA, Reagan J, Pogorzelska-Maziarz M, Srinath D, Stone PW (2015) State-mandated reporting of health care-associated infections in the United States: trends over time. Am J Med Qual 30(5):417–424.  https://doi.org/10.1177/1062860614540200 PubMedGoogle Scholar
  85. Huys G, Coopman V, Van Varenbergh D, Cordonnier J (2012) Selective culturing and genus-specific PCR detection for identification of Aeromonas in tissue samples to assist the medico-legal diagnosis of death by drowning. Forensic Sci Int 221(1–3):11–15.  https://doi.org/10.1016/j.forsciint.2012.03.017 PubMedGoogle Scholar
  86. Jansen HJ, Breeveld FJ, Stijnis C, Grobusch MP (2014) Biological warfare, bioterrorism, and biocrime. Clin Microbiol Infect 20(6):488–496.  https://doi.org/10.1111/1469-0691.12699 PubMedGoogle Scholar
  87. Javan GT, Finley SJ, Abidin Z, Mulle JG (2016) The thanatomicrobiome: a missing piece of the microbial puzzle of death. Front Microbiol 7:225.  https://doi.org/10.3389/fmicb.2016.00225 PubMedPubMedCentralGoogle Scholar
  88. Javan GT, Finley SJ, Can I, Wilkinson JE, Hanson JD, Tarone AM (2016) Human thanatomicrobiome succession and time since death. Sci Rep 6:29598.  https://doi.org/10.1038/srep29598 PubMedPubMedCentralGoogle Scholar
  89. Javan GT, Finley SJ, Smith T, Miller J, Wilkinson JE (2017) Cadaver thanatomicrobiome signatures: the ubiquitous nature of Clostridium species in human decomposition. Front Microbiol 8:2096.  https://doi.org/10.3389/fmicb.2017.02096 PubMedPubMedCentralGoogle Scholar
  90. Kageyama T, Fujisaki S, Takashita E, Xu H, Yamada S, Uchida Y, Neumann G, Saito T, Kawaoka Y, Tashiro M (2013) Genetic analysis of novel avian A (H7N9) influenza viruses isolated from patients in China, February to April 2013. Eurosurveillance 18(15):20453PubMedGoogle Scholar
  91. Kakizaki E, Kozawa S, Matsuda H, Muraoka E, Uchiyama T, Sakai M, Yukawa N (2010) Freshwater bacterioplankton cultured from liver, kidney and lungs of a decomposed cadaver retrieved from a sandy seashore: possibility of drowning in a river and then floating out to sea. Legal Med 12(4):195–199.  https://doi.org/10.1016/j.legalmed.2010.03.008 PubMedGoogle Scholar
  92. Kakizaki E, Kozawa S, Tashiro N, Sakai M, Yukawa N (2009) Detection of bacterioplankton in immersed cadavers using selective agar plates. Leg Med (Tokyo) Suppl 1:S350–S353.  https://doi.org/10.1016/j.legalmed.2009.01.046 Google Scholar
  93. Kalasinsky KS, Dixon MM, Schmunk GA, Kish S (2001) Blood, brain, and hair GHB concentrations following fatal ingestion. J Forensic Sci 46(3):728–730PubMedGoogle Scholar
  94. Khan HA, Baig FK, Mehboob R (2017) Nosocomial infections: epidemiology, prevention, control and surveillance. Asian Pac J Trop Biomed 7(5):478–482.  https://doi.org/10.1016/j.apjtb.2017.01.019 Google Scholar
  95. Kintz P, Villain M, Cirimele V, Ludes B (2004) GHB in postmortem toxicology: discrimination between endogenous production from exposure using multiple specimens. Forensic Sci Int 143(2–3):177–181.  https://doi.org/10.1016/j.forsciint.2004.02.036 PubMedGoogle Scholar
  96. Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, Cardo DM (2007) Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Rep 122(2):160–166.  https://doi.org/10.1177/003335490712200205 PubMedPubMedCentralGoogle Scholar
  97. Kong HH, Segre JA (2012) Skin microbiome: looking back to move forward. J Investig Dermatol 132(3):933–939.  https://doi.org/10.1038/jid.2011.417 PubMedGoogle Scholar
  98. Kovach GC (2008) Prison for man with HIV who spit on a police officer. New York Times:A16Google Scholar
  99. Krous HF, Byard RW (2005) Controversies in pediatric forensic pathology. Forensic Sci Med Pathol 1(1):9–18.  https://doi.org/10.1385/FSMP:1:1:009 PubMedGoogle Scholar
  100. Kuiper I (2016) Microbial forensics: next-generation sequencing as catalyst: the use of new sequencing technologies to analyze whole microbial communities could become a powerful tool for forensic and criminal investigations. EMBO Rep 17:1085–1087.  https://doi.org/10.15252/embr.201642794 PubMedPubMedCentralGoogle Scholar
  101. Kwon JW, Armbrust KL (2006) Laboratory persistence and fate of fluoxetine in aquatic environments. Environ Toxicol Chem 25(10):2561–2568PubMedGoogle Scholar
  102. Langdon A, Crook N, Dantas G (2016) The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8(1):39.  https://doi.org/10.1186/s13073-016-0294-z PubMedPubMedCentralGoogle Scholar
  103. Lax S, Gilbert JA (2015) Hospital-associated microbiota and implications for nosocomial infections. Trends Mol Med 21(7):427–432.  https://doi.org/10.1016/j.molmed.2015.03.005 PubMedGoogle Scholar
  104. Lax S, Hampton-Marcell JT, Gibbons SM, Colares GB, Smith D, Eisen JA, Gilbert JA (2015) Forensic analysis of the microbiome of phones and shoes. Microbiome 3(1):21.  https://doi.org/10.1186/s40168-015-0082-9 PubMedPubMedCentralGoogle Scholar
  105. Lee S-Y, Eom Y-B (2016) Analysis of microbial composition associated with freshwater and seawater. Biomed Sci Lett 22(4):150–159.  https://doi.org/10.15616/BSL.2016.22.4.150 Google Scholar
  106. Lee HC, Palmbach T, Miller MT (2001) Henry Lee’s crime scene handbook. Academic PressGoogle Scholar
  107. Lee SY, Woo SK, Lee SM, Ha EJ, Lim KH, Choi KH, Roh YH, Eom YB (2017) Microbiota composition and pulmonary surfactant protein expression as markers of death by drowning. J Forensic Sci 62(4):1080–1088.  https://doi.org/10.1111/1556-4029.13347 PubMedGoogle Scholar
  108. Lehman DC (2014) Forensic microbiology. Clin Microbiol Newsl 36(7):49–54Google Scholar
  109. Levine B, Blanke R, Valentour J (1983) Postmortem stability of benzodiazepines in blood and tissues. J Forensic Sci 28(1):102–115PubMedGoogle Scholar
  110. Lewis T, Loman N, Bingle L, Jumaa P, Weinstock G, Mortiboy D, Pallen MJ (2010) High-throughput whole-genome sequencing to dissect the epidemiology of Acinetobacter baumannii isolates from a hospital outbreak. J Hosp Infect 75(1):37–41.  https://doi.org/10.1016/j.jhin.2010.01.012 PubMedGoogle Scholar
  111. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady A, Creasy HH, McCracken C, Giglio MG, McDonald D, Franzosa EA, Knight R, White O, Huttenhower C (2017) Strains, functions and dynamics in the expanded human microbiome project. Nature 550(7674):61–66.  https://doi.org/10.1038/nature23889 PubMedPubMedCentralGoogle Scholar
  112. Löfman S, Hakko H, Mainio A, Riipinen P (2017) Affective disorders and completed suicide by self-poisoning, trend of using antidepressants as a method of self-poisoning. Psychiatry Res 255:360–366.  https://doi.org/10.1016/j.psychres.2017.05.031 PubMedGoogle Scholar
  113. Lucci A, Campobasso CP, Cirnelli A, Lorenzini G (2008) A promising microbiological test for the diagnosis of drowning. Forensic Sci Int 182(1–3):20–26.  https://doi.org/10.1016/j.forsciint.2008.09.004 PubMedGoogle Scholar
  114. Lunetta P, Penttilä A, Hällfors G (1998) Scanning and transmission electron microscopical evidence of the capacity of diatoms to penetrate the alveolo-capillary barrier in drowning. Int J Legal Med 111(5):229–237PubMedGoogle Scholar
  115. Madea B (2015) Estimation of the time since death. CRC PressGoogle Scholar
  116. Madea B (2016) Methods for determining time of death. Forensic Sci Med Pathol 12(4):451–485.  https://doi.org/10.1007/s12024-016-9776-y PubMedGoogle Scholar
  117. Maile AE, Inoue CG, Barksdale LE, Carter DO (2017) Toward a universal equation to estimate postmortem interval. Forensic Sci Int 272:150–153.  https://doi.org/10.1016/j.forsciint.2017.01.013 PubMedGoogle Scholar
  118. Mazarr-Proo S, Kerrigan S (2005) Distribution of GHB in tissues and fluids following a fatal overdose. J Anal Toxicol 29(5):398–400PubMedGoogle Scholar
  119. McGuire AL, Colgrove J, Whitney SN, Diaz CM, Bustillos D, Versalovic J (2008) Ethical, legal, and social considerations in conducting the human microbiome project. Genome Res 18(12):1861–1864.  https://doi.org/10.1101/gr.081653.108 PubMedPubMedCentralGoogle Scholar
  120. Meadow JF, Altrichter AE, Green JL (2014) Mobile phones carry the personal microbiome of their owners. PeerJ 2:e447.  https://doi.org/10.7717/peerj.447 PubMedPubMedCentralGoogle Scholar
  121. Meier BM, Stone PW, Gebbie KM (2008) Public health law for the collection and reporting of health care–associated infections. Am J Infect Control 36(8):537–551.  https://doi.org/10.1016/j.ajic.2008.01.015 PubMedPubMedCentralGoogle Scholar
  122. Metcalf JL, Carter DO, Knight R (2016) Microbiology of death. Curr Biol 26(13):R561–R563.  https://doi.org/10.1016/j.cub.2016.03.042 PubMedGoogle Scholar
  123. Metcalf JL, Parfrey LW, Gonzalez A, Lauber CL, Knights D, Ackermann G, Humphrey GC, Gebert MJ, Van Treuren W, Berg-Lyons D (2013) A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLIFE 2:e01104.  https://doi.org/10.7554/eLife.01104 PubMedPubMedCentralGoogle Scholar
  124. Metcalf JL, Xu ZZ, Bouslimani A, Dorrestein P, Carter DO, Knight R (2017) Microbiome tools for forensic science. Trends Biotechnol 35(9):814–823.  https://doi.org/10.1016/j.tibtech.2017.03.006 PubMedGoogle Scholar
  125. Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, Song SJ, Amir A, Larsen P, Sangwan N, Haarmann D, Humphrey GC, Ackermann G, Thompson LR, Lauber C, Bibat A, Nicholas C, Gebert MJ, Petrosino JF, Reed SC, Gilbert JA, Lynne AM, Bucheli SR, Carter DO, Knight R (2016) Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351(6269):158–162.  https://doi.org/10.1126/science.aad2646 PubMedGoogle Scholar
  126. Metzker ML, Mindell DP, Liu X-M, Ptak RG, Gibbs RA, Hillis DM (2002) Molecular evidence of HIV-1 transmission in a criminal case. Proc Natl Acad Sci U S A 99(22):14292–14297.  https://doi.org/10.1073/pnas.222522599 PubMedPubMedCentralGoogle Scholar
  127. Monden R, Roest AM, van Ravenzwaaij D, Wagenmakers E-J, Morey R, Wardenaar KJ, de Jonge P (2018) The comparative evidence basis for the efficacy of second-generation antidepressants in the treatment of depression in the US: a Bayesian meta-analysis of Food and Drug Administration reviews. J Affect Disord 235:393–398.  https://doi.org/10.1016/j.jad.2018.04.040 PubMedGoogle Scholar
  128. Morentin B, Suárez-Mier MP, Aguilera B, Arrieta J, Audicana C, Fernández-Rodríguez A (2012) Clinicopathological features of sudden unexpected infectious death: population-based study in children and young adults. Forensic Sci Int 220(1–3):80–84.  https://doi.org/10.1016/j.forsciint.2012.01.030 PubMedGoogle Scholar
  129. Moriya F, Hashimoto Y (2003) Tissue distribution of nitrazepam and 7-aminonitrazepam in a case of nitrazepam intoxication. Forensic Sci Int 131(2–3):108–112PubMedGoogle Scholar
  130. Muchmore S (2013) Former dentist faces another lawsuit. Tulsa World 18Google Scholar
  131. Oliveira M, Arenas M, Amorim A (2018) New trends in microbial epidemiology: can an old dog learn new tricks? Ann Microbiol Immunol 1(1):1–7Google Scholar
  132. Parkinson RA, Dias K-R, Horswell J, Greenwood P, Banning N, Tibbett M, Vass AA (2009) Microbial community analysis of human decomposition on soil. In: Ritz K, Dawson L, Miller D (eds) Criminal and environmental soil forensics. Springer, Amsterdam, pp 379–394Google Scholar
  133. Pattnaik P, Sekhar K (2008) Forensics for tracing microbial signatures: biodefence perspective and preparedness for the unforeseen. Indian J Biotecnhol 7:23–31Google Scholar
  134. Pavlin JA (1999) Epidemiology of bioterrorism. Emerg Infect Dis 5(4):528–530.  https://doi.org/10.3201/eid0504.990412 PubMedPubMedCentralGoogle Scholar
  135. Pounder DJ, Hartley AK, Watmough PJ (1994) Postmortem redistribution and degradation of dothiepin. Human case studies and an animal model. Am J Forensic Med Pathol 15(3):231–235PubMedGoogle Scholar
  136. Rácz E, Könczöl F, Tóth D, Patonai Z, Porpáczy Z, Kozma Z, Poór VS, Sipos K (2016) PCR-based identification of drowning: four case reports. Int J Legal Med 130(5):1303–1307.  https://doi.org/10.1007/s00414-016-1359-7 PubMedGoogle Scholar
  137. Rasko DA, Worsham PL, Abshire TG, Stanley ST, Bannan JD, Wilson MR, Langham RJ, Decker RS, Jiang L, Read TD, Phillippy AM, Salzberg SL, Pop M, Van Ert MN, Kenefic LJ, Keim PS, Fraser-Liggett CM, Ravel J (2011) Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proc Natl Acad Sci U S A 108(12):5027–5032.  https://doi.org/10.1073/pnas.1016657108 PubMedPubMedCentralGoogle Scholar
  138. Raymond F, Ouameur AA, Déraspe M, Iqbal N, Gingras H, Dridi B, Leprohon P, Plante P-L, Giroux R, Bérubé È Frenette J, Boudreau DK, Simard JL, Chabot I, Domingo MC, Trottier S, Boissinot M, Huletsky A, Roy PH, Ouellette M, Bergeron MG, Corbeil J (2016) The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J 10(3):707–720.  https://doi.org/10.1038/ismej.2015.148 PubMedGoogle Scholar
  139. Robertson MD, Drummer OH (1995) Postmortem drug metabolism by bacteria. J Forensic Sci 40(3):382–386PubMedGoogle Scholar
  140. Robertson M, Drummer O (1998) Stability of nitrobenzodiazepines in postmortem blood. J Forensic Sci 43(1):5–8PubMedGoogle Scholar
  141. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290.  https://doi.org/10.1038/ismej.2007.53 PubMedPubMedCentralGoogle Scholar
  142. Rommel N, Rohleder NH, Koerdt S, Wagenpfeil S, Härtel-Petri R, Wolff K-D, Kesting MR (2016) Sympathomimetic effects of chronic methamphetamine abuse on oral health: a cross-sectional study. BMC Oral Health 16(1):59.  https://doi.org/10.1186/s12903-016-0218-8 PubMedPubMedCentralGoogle Scholar
  143. Sastre C, Bartoli C, Baillif-Couniou V, Leonetti G, Pelissier-Alicot A-L (2017) Post mortem redistribution of drugs: current state of knowledge. Curr Pharm Des 23(36):5530–5541.  https://doi.org/10.2174/1381612823666170622111739 PubMedGoogle Scholar
  144. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31(1):107–133.  https://doi.org/10.1146/annurev.mi.31.100177.000543 PubMedPubMedCentralGoogle Scholar
  145. Schmedes SE, Sajantila A, Budowle B (2016) Expansion of microbial forensics. J Clin Microbiol 54:1964–1974PubMedPubMedCentralGoogle Scholar
  146. Schmedes SE, Woerner AE, Budowle B (2017) Forensic human identification using skin microbiomes. Appl Environ Microbiol 83(22):e01672–e01617PubMedCentralGoogle Scholar
  147. Schürch AC, Siezen RJ (2010) Genomic tracing of epidemics and disease outbreaks. Microb Biotechnol 3(6):628–633.  https://doi.org/10.1111/j.1751-7915.2010.00224.x PubMedPubMedCentralGoogle Scholar
  148. Sender R, Fuchs S, Milo R (2016a) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164(3):337–340.  https://doi.org/10.1016/j.cell.2016.01.013 PubMedPubMedCentralGoogle Scholar
  149. Sender R, Fuchs S, Milo R (2016b) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533.  https://doi.org/10.1371/journal.pbio.1002533 PubMedPubMedCentralGoogle Scholar
  150. Shama G, Malik DJ (2013) The uses and abuses of rapid bioluminescence-based ATP assays. Int J Hyg Environ Health 216(2):115–125.  https://doi.org/10.1016/j.ijheh.2012.03.009 PubMedGoogle Scholar
  151. Sijen T (2015) Molecular approaches for forensic cell type identification: on mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int Genet 18:21–32.  https://doi.org/10.1016/j.fsigen.2014.11.015 PubMedGoogle Scholar
  152. Sitthiwong N, Ruangyuttikarn W, Vongvivach S, Peerapornpisal Y (2014) Detection and identification of diatoms in tissue samples of drowning victims. Chiang Mai J Sci 41(5.1):1020–1031Google Scholar
  153. Sjödin A, Broman T, Melefors Ö, Andersson G, Rasmusson B, Knutsson R, Forsman M (2013) The need for high-quality whole-genome sequence databases in microbial forensics. Biosecur Bioterror 11(S1):S78–S86.  https://doi.org/10.1089/bsp.2013.0007 PubMedGoogle Scholar
  154. Skopp G (2010) Postmortem toxicology. Forensic Sci Med Pathol 6(4):314–325.  https://doi.org/10.1007/s12024-010-9150-4 PubMedGoogle Scholar
  155. Skory CD, Freer SN, Bothast RJ (1997) Screening for ethanol-producing filamentous fungi. Biotechnol Lett 19(3):203–206Google Scholar
  156. Smith SM, Eng R, Padberg JF (1996) Survival of nosocomial pathogenic bacteria at ambient temperature. J Med 27(5–6):293–302PubMedGoogle Scholar
  157. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459(7250):1122–1125.  https://doi.org/10.1038/nature08182 PubMedGoogle Scholar
  158. Sodhi K, Shrivastava A, Arya M, Kumar M (2013) Knowledge of infection control practices among intensive care nurses in a tertiary care hospital. J Infect Public Health 6(4):269–275.  https://doi.org/10.1016/j.jiph.2013.02.004 PubMedGoogle Scholar
  159. Spitz WU, Schneider V (1964) The significance of diatoms in the diagnosis of death by drowning. J Forensic Sci 9(1):11PubMedGoogle Scholar
  160. Stevens H (1984) The stability of some drugs and poisons in putrefying human liver tissues. Sci Justice 24(6):577–589Google Scholar
  161. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A, Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vázquez-Baeza Y, González A, Morton JT, Mirarab S, Xu ZZ, Jiang L, Haroon MF, Kanbar J, Zhu Q, Song SJ, Kosciolek T, Bokulich NA, Lefler J, Brislawn CJ, Humphrey G, Owens SM, Hampton-Marcell J, Berg-Lyons D, McKenzie V, Fierer N, Fuhrman JA, Clauset A, Stevens RL, Shade A, Pollard KS, Goodwin KD, Jansson JK, Gilbert JA, Knight R, The Earth Microbiome Project Consortium (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463.  https://doi.org/10.1038/nature24621 PubMedPubMedCentralGoogle Scholar
  162. Tie J, Uchigasaki S, Haseba T, Ohno Y, Isahai I, Oshida S (2010) Direct and rapid PCR amplification using digested tissues for the diagnosis of drowning. Electrophoresis 31(14):2411–2415.  https://doi.org/10.1002/elps.200900754 PubMedGoogle Scholar
  163. Tomaso H, Neubauer H (2011) Forensic microbiology Forensic medicine-from old problems to new challenges. InTech.  https://doi.org/10.5772/19136 Google Scholar
  164. Tridico SR, Murray DC, Addison J, Kirkbride KP, Bunce M (2014) Metagenomic analyses of bacteria on human hairs: a qualitative assessment for applications in forensic science. Investig Genet 5(1):16.  https://doi.org/10.1186/s13323-014-0016-5 PubMedPubMedCentralGoogle Scholar
  165. Tridico SR, Murray DC, Bunce M, Kirkbride KP (2017) DNA profiling of bacteria from human hair: potential and pitfalls. Forensic Microbiol 358.  https://doi.org/10.1002/9781119062585.ch15 Google Scholar
  166. Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426.  https://doi.org/10.1016/j.tig.2014.07.001 PubMedGoogle Scholar
  167. Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188(1–3):1–17.  https://doi.org/10.1016/j.forsciint.2009.02.013 PubMedGoogle Scholar
  168. Wells D (2001) Drug administration and sexual assault: sex in a glass. Sci Justice 41(3):197–199.  https://doi.org/10.1016/S1355-0306(01)71890-4 PubMedGoogle Scholar
  169. Yang Y, Xie B, Yan J (2014) Application of next-generation sequencing technology in forensic science. Genomics, Proteomics Bioinformatics 12(5):190–197.  https://doi.org/10.1016/j.gpb.2014.09.001 PubMedPubMedCentralGoogle Scholar
  170. Yonemitsu K, Pounder DJ (1993) Postmortem changes in blood tranylcypromine concentration: competing redistribution and degradation effects. Forensic Sci Int 59(2):177–184PubMedGoogle Scholar
  171. Young J, Austin J, Weyrich L (2017) Soil DNA metabarcoding and high-throughput sequencing as a forensic tool: considerations, potential limitations and recommendations. FEMS Microbiol Ecol 93(2).  https://doi.org/10.1093/femsec/fiw207 PubMedGoogle Scholar
  172. Young JM, Rawlence NJ, Weyrich LS, Cooper A (2014) Limitations and recommendations for successful DNA extraction from forensic soil samples: a review. Sci Justice 54(3):238–244.  https://doi.org/10.1016/j.scijus.2014.02.006 PubMedGoogle Scholar
  173. Young JM, Weyrich LS, Breen J, Macdonald LM, Cooper A (2015) Predicting the origin of soil evidence: high throughput eukaryote sequencing and MIR spectroscopy applied to a crime scene scenario. Forensic Sci Int 251:22–31.  https://doi.org/10.1016/j.forsciint.2015.03.008 PubMedGoogle Scholar
  174. Young JM, Weyrich LS, Cooper A (2014) Forensic soil DNA analysis using high-throughput sequencing: a comparison of four molecular markers. Forensic Sci Int Genet 13:176–184.  https://doi.org/10.1016/j.fsigen.2014.07.014 PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  2. 2.Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do PortoPortoPortugal
  3. 3.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations