Applied Microbiology and Biotechnology

, Volume 102, Issue 23, pp 10219–10230 | Cite as

Alterations in the diversity and composition of mice gut microbiota by lytic or temperate gut phage treatment

  • Hong-duo Bao
  • Mao-da Pang
  • Ademola Olaniran
  • Xu-hui Zhang
  • Hui Zhang
  • Yan Zhou
  • Li-chang Sun
  • Stefan SchmidtEmail author
  • Ran WangEmail author
Applied microbial and cell physiology


Phages, the most abundant species in the mammalian gut, have numerous advantages as biocontrol agent over antibiotics. In this study, mice were orally treated with the lytic gut phage PA13076 (group B), the temperate phage BP96115 (group C), no phage (group A), or streptomycin (group D) over 31 days. At the end of the experiment, fecal microbiota diversity and composition was determined and compared using high-throughput sequencing of the V3–V4 hyper-variable region of the 16S rRNA gene and virus-like particles (VLPs) were quantified in feces. There was high diversity and richness of microbiota in the lytic and temperate gut phage-treated mice, with the lytic gut phage causing an increased alpha diversity based on the Chao1 index (p < 0.01). However, the streptomycin treatment reduced the microbiota diversity and richness (p = 0.0299). Both phage and streptomycin treatments reduced the abundance of Bacteroidetes at the phylum level (p < 0.01) and increased the abundance of the phylum Firmicutes. Interestingly, two beneficial genera, Lactobacillus and Bifidobacterium, were enhanced by treatment with the lytic and temperate gut phage. The abundance of the genus Escherichia/Shigella was higher in mice after temperate phage administration than in the control group (p < 0.01), but lower than in the streptomycin group. Moreover, streptomycin treatment increased the abundance of the genera Klebsiella and Escherichia/Shigella (p < 0.01). In terms of the gut virome, fecal VLPs did not change significantly after phage treatment. This study showed that lytic and temperate gut phage treatment modulated the composition and diversity of gut microbiota and the lytic gut phage promoted a beneficial gut ecosystem, while the temperate phage may promote conditions enabling diseases to occur.


High-throughput sequencing Lytic gut phage Temperate gut phage Gut microbiota Diversity Composition 


Author contributions

HDB, SS, and RW designed the experiments; HDB, MDP, XHZ, HZ, YZ, and LCS performed the experiments; HDB, AO, SS, and RW analyzed the data and wrote the paper.

Funding information

This study was supported by the National Natural Science Foundation of China (NSFC 31701725 and 31671955), the Natural Science Foundation of Jiangsu Province (No. BK20161373), Jiangsu Agricultural Science and Technology Innovation Foundation (No. cx (16) 1028), Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base (No. 3201615), and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures involving animals were approved by the Animal Care and Ethic Committee of Jiangsu Academy of Agricultural Sciences.


  1. Allen HK, Looft T, Bayles DO, Humphrey S, Levine UY, Alt D, Stanton TB (2011) Antibiotics in feed induce prophages in swine fecal microbiomes. MBio 2(6):1867–1877. CrossRefGoogle Scholar
  2. Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7(7):1344–1353. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson MJ, Santana-Garcon J (2015) Measures of precision for dissimilarity-based multivariate analysis of ecological communities. Ecol Lett 18(1):66–73. CrossRefPubMedGoogle Scholar
  4. Ashraf R, Shah NP (2014) Immune system stimulation by probiotic microorganisms. Crit Rev Food Sci Nutr 54(7):938–956. CrossRefPubMedGoogle Scholar
  5. Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, Stotland A, Wolkowicz R, Cutting AS, Doran KS, Salamon P, Youle M, Rohwer F (2013) Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 110(26):10771–10776. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barthel M, Hapfelmeier S, Quintanilla-Martinez L, Kremer M, Rohde M, Hogardt M, Pfeffer K, Russmann H, Hardt WD (2003) Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 71(5):2839–2858. CrossRefGoogle Scholar
  7. Basic M, Keubler LM, Buettner M, Achard M, Breves G, Schroder B, Smoczek A, Jorns A, Wedekind D, Zschemisch NH, Gunther C, Neumann D, Lienenklaus S, Weiss S, Hornef MW, Mahler M, Bleich A (2014) Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflamm Bowel Dis 20(3):431–443. CrossRefPubMedGoogle Scholar
  8. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bischoff SC (2011) ‘Gut health’: a new objective in medicine? BMC Med 9:24. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blaut M, Clavel T (2007) Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr 137(2):751S–755S. CrossRefPubMedGoogle Scholar
  11. Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, Mahaffy JM, Mueller J, Nulton J, Rayhawk S, Rodriguez-Brito B, Salamon P, Rohwer F (2008) Viral diversity and dynamics in an infant gut. Res Microbiol 159(5):367–373. CrossRefPubMedGoogle Scholar
  12. Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, Head RD, Xavier R, Stappenbeck TS, Virgin HW (2010) Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141(7):1135–1145. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cho SY, Kim J, Lee JH, Sim JH, Cho DH, Bae IH, Lee H, Seol MA, Shin HM, Kim TJ, Kim DY, Lee SH, Shin SS, Lm SH, Kim HR (2016) Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice. Sci Rep 6:39026. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Clarke SF, Murphy EF, Nilaweera K, Ross PR, Shanahan F, O’Toole PW, Cotter PD (2012) The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes 3(3):186–202. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cox MJ, Huang YJ, Fujimura KE, Liu JT, McKean M, Boushey HA, Segal MR, Brodie EL, Cabana MD, Lynch SV (2010) Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. PLoS One 5(1):e8745. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dabrowska K, Switala-Jelen K, Opolski A, Weber-Dabrowska B, Gorski A (2005) Bacteriophage penetration in vertebrates. J Appl Microbiol 98(1):7–13. CrossRefPubMedGoogle Scholar
  17. Dalmasso M, Hill C, Ross RP (2014) Exploiting gut bacteriophages for human health. Trends Microbiol 22(7):399–405. CrossRefPubMedGoogle Scholar
  18. Davies EV, Winstanley C, Fothergill JL, James CE (2016) The role of temperate bacteriophages in bacterial infection. FEMS Microbiol Lett 363(5):fnw015. CrossRefPubMedGoogle Scholar
  19. De Paepe M, Leclerc M, Tinsley CR, Petit MA (2014) Bacteriophages: an underestimated role in human and animal health? Front Cell Infect Microbiol 4:39. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eisenhauer N, Scheu S, Jousset A (2012) Bacterial diversity stabilizes community productivity. PLoS One 7(3):e34517. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MO, Shanahan F, Nally K, Dougan G, van Sinderen D (2012) Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA 109(6):2108–2113. CrossRefPubMedGoogle Scholar
  22. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331):543–547. CrossRefPubMedGoogle Scholar
  23. Gareau MG, Sherman PM, Walker WA (2010) Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7(9):503–514. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Golomidova A, Kulikov E, Isaeva A, Manykin A, Letarov A (2007) The diversity of coliphages and coliforms in horse feces reveals a complex pattern of ecological interactions. Appl Environ Microbiol 73(19):5975–5981. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gorski A, Weber-Dabrowska B (2005) The potential role of endogenous bacteriophages in controlling invading pathogens. Cell Mol Life Sci 62(5):511–519. CrossRefPubMedGoogle Scholar
  26. Gorski A, Wazna E, Dabrowska BW, Dabrowska K, Switala-Jelen K, Miedzybrodzki R (2006) Bacteriophage translocation. FEMS Immunol Med Microbiol 46(3):313–319. CrossRefPubMedGoogle Scholar
  27. Grazul H, Kanda LL, Gondek D (2016) Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes 7(2):101–114. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Grossart HP, Riemann L, Tang KW (2013) Molecular and functional ecology of aquatic microbial symbionts. Front Microbiol 4:59. doi:
  29. Heck K, Machineski GS, Alvarenga DO, Vaz M, Varani AM, Fiore MF (2016) Evaluating methods for purifying cyanobacterial cultures by qPCR and high-throughput Illumina sequencing. J Microbiol Methods 129:55–60. CrossRefPubMedGoogle Scholar
  30. Henry M, Lavigne R, Debarbieux L (2013) Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother 57(12):5961–5968. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467. CrossRefPubMedGoogle Scholar
  32. Iizumi T, Battaglia T, Ruiz V, Perez Perez GI (2017) Gut microbiome and antibiotics. Arch Med Res 48:727–734. CrossRefPubMedGoogle Scholar
  33. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, Fakiri EM (2013) Health benefits of probiotics: a review. ISRN Nutr 2013:481651–481657. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1. CrossRefGoogle Scholar
  35. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R (2012) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Microbiol Chapter 1:Unit 1E:5. CrossRefGoogle Scholar
  36. Lemos LN, Fulthorpe RR, Triplett EW, Roesch LF (2011) Rethinking microbial diversity analysis in the high throughput sequencing era. J Microbiol Methods 86(1):42–51. CrossRefPubMedGoogle Scholar
  37. Lepage P, Colombet J, Marteau P, Sime-Ngando T, Dore J, Leclerc M (2008) Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57(3):424–425. CrossRefPubMedGoogle Scholar
  38. Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière HM, Raes J, Ehrlich D, Doré J (2013) A metagenomic insight into our gut’s microbiome. Gut 62(1):146–158. CrossRefPubMedGoogle Scholar
  39. Letarov A, Kulikov E (2009) The bacteriophages in human- and animal body-associated microbial communities. J Appl Microbiol 107(1):1–13. CrossRefPubMedGoogle Scholar
  40. Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG (2017) Effect of riboflavin-producing bacteria against chemically-induced colitis in mice. J Appl Microbiol 124:232–240. CrossRefPubMedGoogle Scholar
  41. Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, Bittinger K, Bailey A, Friedman ES, Hoffmann C, Albenberg L, Sinha R, Compher C, Gilroy E, Nessel L, Grant A, Chehoud C, Li H, Wu GD, Bushman FD (2017) Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in Pediatric Crohn’s Disease. Cell Host Microbe 22(2):247. CrossRefPubMedGoogle Scholar
  42. Lusiak-Szelachowska M, Weber-Dabrowska B, Jonczyk-Matysiak E, Wojciechowska R, Gorski A (2017) Bacteriophages in the gastrointestinal tract and their implications. Gut Pathog 9:44. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mai V, Ukhanova M, Visone L, Abuladze T, Sulakvelidze A (2010) Bacteriophage administration reduces the concentration of Listeria monocytogenes in the gastrointestinal tract and its translocation to spleen and liver in experimentally infected mice. Int J Microbiol 2010:624234. doi:, 1, 6CrossRefGoogle Scholar
  45. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339. CrossRefPubMedGoogle Scholar
  46. Mills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RP (2013) Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 4(1):4–16. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, Bushman FD (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21(10):1616–1625. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Minot S, Grunberg S, Wu GD, Lewis JD, Bushman FD (2012) Hypervariable loci in the human gut virome. Proc Natl Acad Sci U S A 109(10):3962–3966. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mountzouris KC, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K (2007) Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult Sci 86(2):309–317. CrossRefPubMedGoogle Scholar
  50. Namasivayam S, Maiga M, Yuan W, Thovarai V, Costa DL, Mittereder LR, Wipperman MF, Glickman MS, Dzutsev A, Trinchieri G, Sher A (2017) Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome 5(1):71. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Norman JM, Handley SA, Virgin HW (2014) Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology 146(6):1459–1469. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rampelli S, Schnorr SL, Consolandi C, Turroni S, Severgnini M, Peano C, Brigidi P, Crittenden AN, Henry AG, Candela M (2015) Metagenome sequencing of the Hadza Hunter-Gatherer gut microbiota. Curr Biol 25(13):1682–1693. CrossRefPubMedGoogle Scholar
  53. Ravi MPLEM, Tian Q, Ashish RK, Akhil M, Asma N, Patricia WL (2011) Lactobacillus rhamnosus GG accelerates intestinal barrier maturation in developing mice through induction of tight junction proteins. The FASEB J 25(1):360–364Google Scholar
  54. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466(7304):334–338. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rist VT, Weiss E, Eklund M, Mosenthin R (2013) Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review. Animal 7(7):1067–1078. CrossRefPubMedGoogle Scholar
  56. Robinson AM, Gondalia SV, Karpe AV, Eri R, Beale DJ, Morrison PD, Palombo EA, Nurgali K (2016) Fecal microbiota and metabolome in a mouse model of spontaneous chronic colitis: relevance to human inflammatory bowel disease. Inflamm Bowel Dis 22(12):2767–2787. CrossRefPubMedGoogle Scholar
  57. Rohwer F (2003) Global phage diversity. Cell 113(2):141. CrossRefPubMedGoogle Scholar
  58. Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD, McCulloch JA, Badger JH, Ajami NJ, Trinchieri G, Pardo-Manuel de Villena F, Yewdell JW, Rehermann B (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171(5):1015–1028 e13. CrossRefGoogle Scholar
  59. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, Huttenhower C, Littman DR (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2:e01202. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Shreiner A, Huffnagle GB, Noverr MC (2008) The “microflora hypothesis” of allergic disease. Adv Exp Med Biol 635:113–134. CrossRefPubMedGoogle Scholar
  61. Sun CL, Relman DA (2013) Microbiota’s ‘little helpers’: bacteriophages and antibiotic-associated responses in the gut microbiome. Genome Biol 14(7):127. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tanji Y, Shimada T, Fukudomi H, Miyanaga K, Nakai Y, Unno H (2005) Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. J Biosci Bioeng 100(3):280–287. CrossRefPubMedGoogle Scholar
  63. Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F (2009) Laboratory procedures to generate viral metagenomes. Nat Protoc 4(4):470–483. CrossRefPubMedGoogle Scholar
  64. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277–283Google Scholar
  65. Volker M. MU, Mary K. R., Manrong Li., and Alexander S. (2015) Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota. Bacteriophage 5:(4): e1088124CrossRefGoogle Scholar
  66. WHO (2014) WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health. WHO, GenevaGoogle Scholar
  67. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mahler A, Balogh A, Marko L, Vvedenskaya O, Kleiner FH, Tsvetkov D, Klug L, Costea PI, Sunagawa S, Maier L, Rakova N, Schatz V, Neubert P, Fratzer C, Krannich A, Gollasch M, Grohme DA, Corte-Real BF, Gerlach RG, Basic M, Typas A, Wu C, Titze JM, Jantsch J, Boschmann M, Dechend R, Kleinewietfeld M, Kempa S, Bork P, Linker RA, Alm EJ, Muller DN (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551(7682):585–589. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yang JY, Kim MS, Kim E, Cheon JH, Lee YS, Kim Y, Lee SH, Seo SU, Shin SH, Choi SS, Kim B, Chang SY, Ko HJ, Bae JW, Kweon MN (2016) Enteric viruses ameliorate gut inflammation via Toll-like receptor 3 and Toll-like receptor 7-mediated interferon-beta production. Immunity 44(4):889–900. CrossRefPubMedGoogle Scholar
  69. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9(6):e1403. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zerzucha P, Boguszewska D, Zagdanska B, Walczak B (2012) Non-parametric multivariate analysis of variance in the proteomic response of potato to drought stress. Anal Chim Acta 719:1–7. CrossRefPubMedGoogle Scholar
  71. Zhang R, Eggleston K, Rotimi V, Zeckhauser RJ (2006) Antibiotic resistance as a global threat: evidence from China, Kuwait and the United States. Glob Health 2:6. CrossRefGoogle Scholar
  72. Zhang W, Mi Z, Yin X, Fan H, An X, Zhang Z, Chen J, Tong Y (2013) Characterization of Enterococcus faecalis phage IME-EF1 and its endolysin. PLoS One 8(11):e80435. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhang D, Ji H, Liu H, Wang S, Wang J, Wang Y (2016) Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic. Appl Microbiol Biotechnol 100(23):10081–10093. CrossRefPubMedGoogle Scholar
  74. Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C, Ding J, Wang J, Wang H, Fan W, Zhao J, Meng H (2015) The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One 10(2):e0117441. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hong-duo Bao
    • 1
    • 2
    • 3
    • 4
  • Mao-da Pang
    • 1
  • Ademola Olaniran
    • 2
  • Xu-hui Zhang
    • 3
  • Hui Zhang
    • 1
  • Yan Zhou
    • 1
  • Li-chang Sun
    • 1
  • Stefan Schmidt
    • 4
    Email author
  • Ran Wang
    • 1
    Email author
  1. 1.Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding BaseJiangsu Academy of Agricultural SciencesNanjingChina
  2. 2.Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and ScienceUniversity of KwaZulu-Natal, Westville CampusDurbanSouth Africa
  3. 3.College of ForestryNanjing Forestry UniversityNanjingChina
  4. 4.Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and ScienceUniversity of KwaZulu-Natal, Pietermaritzburg CampusPietermaritzburgSouth Africa

Personalised recommendations