Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 23, pp 10043–10053 | Cite as

Structural and functional properties of antimicrobial protein L5 of Lysоbacter sp. XL1

  • I. V. Kudryakova
  • A. G. Gabdulkhakov
  • S. V. Tishchenko
  • V. Ya. Lysanskaya
  • N. E. Suzina
  • I. M. Tsfasman
  • A. S. Afoshin
  • N. V. VasilyevaEmail author
Biotechnologically relevant enzymes and proteins

Abstract

The Gram-negative bacterium Lysobacter sp. XL1 secretes into the extracellular space five bacteriolytic enzymes that lyse the cell walls of competing microorganisms. Of special interest are homologous lytic proteases L1 and L5. This work found protein L5 to possess Gly-Gly endopeptidase and N-acetylmuramoyl-l-Ala amidase activities with respect to staphylococcal peptidoglycan. Protein L5 was found to be capable of aggregating into amyloid-like fibril structures. The crystal structure of protein L5 was determined at a 1.60-Å resolution. Protein L5 was shown to have a rather high structural identity with bacteriolytic protease L1 of Lysobacter sp. XL1 and α-lytic protease of Lysobacter enzymogenes at a rather low identity of their amino acid sequences. Still, the structure of protein L5 was revealed to have regions that differed from their equivalents in the homologs. The revealed structural distinctions in L5 are suggested to be of importance in exhibiting its unique properties.

Keywords

Antimicrobial proteins Bacteriolytic protease L5 Lysobacter sp. XL1 Peptidoglycan Substrate specificity Crystal structure of protein L5 

Notes

Acknowledgements

We are grateful to Victor Selivanov for the English translation and Andrey Machulin and Vitaly Balobanov for the fruitful discussions.

Funding information

The structural part of the study was supported by the program of the Presidium of the Russian Academy of Sciences “Molecular and Cell Biology and Postgenomic Technologies”. Electron-microscopic studies were carried out with the support of the Core Facility “UNIQEM Collection”, S.N. Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The present study does not contain any experiments in relation to either human participants or animal models by any of the authors.

References

  1. Begunova EA, Stepnaya OA, Lysanskaya VY, Kulaev IS (2003) Specificity of the action of lysoamidase on Staphylococcus aureus 209P cell walls. Biochemistry (Mosc) 68:735–739CrossRefGoogle Scholar
  2. Bone R, Shenvi AB, Kettner CA, Agard DA (1987) Serine protease mechanism: structure of an inhibitory complex of α-lytic protease and a tightly bound peptide boronic acid. Biochemistry 26:7609–7614CrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  4. Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28:367–393CrossRefGoogle Scholar
  5. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501.  https://doi.org/10.1107/S0907444910007493 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Filippova II, Lysogorskaia EN, Oksenoĭt ES, Troshchenkova EP, Stepanov VM (1988) New fluorescent substrates for metalloendopeptidases with internal quenching of fluorescence. Bioorg Khim 14:467–471PubMedGoogle Scholar
  7. Fuhrmann CN, Kelch BA, Ota N, Agard DA (2004) The 0.83 Å resolution crystal structure of α-lytic protease reveals the detailed structure of the active site and identifies a source of conformational strain. J Mol Biol 338:999–1013.  https://doi.org/10.1016/j.jmb.2004.03.018 CrossRefPubMedGoogle Scholar
  8. Fujishige A, Smith KR, Silen JL, Agard DA (1992) Correct folding of α-lytic protease is required for its extracellular secretion from Escherichia coli. J Cell Biol 118:33–42CrossRefGoogle Scholar
  9. Ghuysen JM, Tipper DT, Strominger JL (1966) Enzymes that degrade bacterial cell wall. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Acad. Press, New York, pp 685–699Google Scholar
  10. Gökçen A, Vilcinskas A, Wiesner J (2014) Biofilm-degrading enzymes from Lysobacter gummosus. Virulence 5:378–387.  https://doi.org/10.4161/viru.27919 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Granovsky IE, Kalinin AE, Lapteva YS, Latypov OR, Vasilyeva NV, Tsfasman IM, Stepnaya OA, Kulaev IS, Muranova TA, Krasovskaya LA (2011) Lytic protease AlpB of the bacterium Lysobacter sp. XL1, a DNA fragment coding for lytic protease AlpB of the bacterium Lysobacter sp. XL1, and a method of producing lytic protease AlpB of the bacterium Lysobacter sp. XL1 RF Patent No. 2408725 (in Russian)Google Scholar
  12. Iversen OJ, Grov A (1973) Studies of lysostaphin. Separation and characterization on three enzymes. Eur J Biochem 38:293–300CrossRefGoogle Scholar
  13. Kessler E (2013) β-Lytic metalloendopeptidase. In: Rawlings ND, Salvesen GS (eds) Handbook of proteolytic enzymes, 3rd edn. Academic Press, Oxford, pp 1550–1553CrossRefGoogle Scholar
  14. Koopmann R, Cupelli K, Redecke L, Nass K, Deponte DP, White TA, Stellato F, Rehders D, Liang M, Andreasson J, Aquila A, Bajt S, Barthelmess M, Barty A, Bogan MJ, Bostedt C, Boutet S, Bozek JD, Caleman C, Coppola N, Davidsson J, Doak RB, Ekeberg T, Epp SW, Erk B, Fleckenstein H, Foucar L, Graafsma H, Gumprecht L, Hajdu J, Hampton CY, Hartmann A, Hartmann R, Hauser G, Hirsemann H, Holl P, Hunter MS, Kassemeyer S, Kirian RA, Lomb L, Maia FR, Kimmel N, Martin AV, Messerschmidt M, Reich C, Rolles D, Rudek B, Rudenko A, Schlichting I, Schulz J, Seibert MM, Shoeman RL, Sierra RG, Soltau H, Stern S, Strüder L, Timneanu N, Ullrich J, Wang X, Weidenspointner G, Weierstall U, Williams GJ, Wunderer CB, Fromme P, Spence JC, Stehle T, Chapman HN, Betzel C, Duszenko M (2012) In vivo protein crystallization opens new routes in structural biology. Nat Methods 9:259–262.  https://doi.org/10.1038/nmeth.1859 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kudryakova IV, Suzina NE, Vasilyeva NV (2015) Biogenesis of Lysobacter sp. XL1 vesicles. FEMS Microbiol Lett 362:fnv137.  https://doi.org/10.1093/femsle/fnv137 CrossRefPubMedGoogle Scholar
  16. Kudryakova IV, Shishkova NA, Vasilyeva NV (2016) Outer membrane vesicles of Lysobacter sp. XL1: biogenesis, functions, and applied prospects. Appl Microbiol Biotechnol 100:4791–4801.  https://doi.org/10.1007/s00253-016-7524-6 CrossRefPubMedGoogle Scholar
  17. Kudryakova IV, Suzina NE, Vinokurova NG, Shishkova NA, Vasilyeva NV (2017) Studying factors involved in biogenesis of Lysobacter sp. XL1 outer membrane vesicles. Biochemistry (Mosc) 82:501–509.  https://doi.org/10.1134/S0006297917040125 CrossRefGoogle Scholar
  18. Kulaev IS, Stepnaya OA, Tsfasman IM, Chermenskaya TS, Ledova LA, Zubrizkaja LG, Akimenko VK (2002) Bacteriolytic complex, method for producing said complex and strain for carrying out said method. RF Patent No 2193063 (in Russian)Google Scholar
  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.  https://doi.org/10.1038/227680a0 CrossRefGoogle Scholar
  20. Lapteva YS, Zolova OE, Shlyapnikov MG, Tsfasman IM, Muranova TA, Stepnaya OA, Kulaev IS, Granovsky IE (2012) Cloning and expression analysis of genes encoding lytic endopeptidases L1 and L5 from Lysobacter sp. strain XL1. Appl Environ Microbiol 78:7082–7089.  https://doi.org/10.1128/AEM.01621-12 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li S, Norioka S, Sakiyama F (2000) Purification, characterization, and primary structure of a novel cell wall hydrolytic amidase, CwhA, from Achromobacter lyticus. J Biochem 127:1033–1039CrossRefGoogle Scholar
  22. Ma W, Tang C, Lai L (2005) Specificity of trypsin and chymotrypsin: loop-motion-controlled dynamic correlation as a determinant. Biophys J 89:1183–1193.  https://doi.org/10.1529/biophysj.104.057158 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mace JE, Agard DA (1995) Kinetic and structural characterization of mutations of glycine 216 in α-lytic protease: a new target for engineering substrate specificity. J Mol Biol 254:720–736.  https://doi.org/10.1006/jmbi.1995.0650 CrossRefPubMedGoogle Scholar
  24. Mace JE, Wilk BJ, Agard DA (1995) Functional linkage between the active site of α-lytic protease and distant regions of structure: scanning alanine mutagenesis of a surface loop affects activity and substrate specificity. J Mol Biol 251:116–134.  https://doi.org/10.1006/jmbi.1995.0420 CrossRefPubMedGoogle Scholar
  25. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325:328–332.  https://doi.org/10.1126/science.1173155 CrossRefPubMedPubMedCentralGoogle Scholar
  26. McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63:545–558.  https://doi.org/10.1111/j.1365-2958.2006.05522.x CrossRefPubMedPubMedCentralGoogle Scholar
  27. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674.  https://doi.org/10.1107/S0021889807021206 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Murao S, Takahara G (1973) Lytic enzymes for Gram-negative bacteria produced by Bacillus subtilis YT-25. Agric Biol Chem 37:2671–2673.  https://doi.org/10.1080/00021369.1973.10861058 CrossRefGoogle Scholar
  29. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367.  https://doi.org/10.1107/S0907444911001314 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Niwa T, Kawamura Y, Katagiri Y, Ezaki T (2005) Lytic enzyme, labiase for a broad range of Gram-positive bacteria and its application to analyze functional DNA/RNA. J Microbiol Methods 61:251–260.  https://doi.org/10.1016/j.mimet.2004.12.006 CrossRefPubMedGoogle Scholar
  31. Ohnishi Y, Yamada T, Kurihara K, Tanaka I, Sakiyama F, Masaki T, Niimura N (2013) Neutron and X-ray crystallographic analysis of Achromobacter protease I at pD 8.0: protonation states and hydration structure in the free form. Biochim Biophys Acta 1834:1642–1647.  https://doi.org/10.1016/j.bbapap.2013.05.012 CrossRefPubMedGoogle Scholar
  32. Panthee S, Hamamoto H, Paudel A, Sekimizu K (2016) Lysobacter species: a potential source of novel antibiotics. Arch Microbiol 198:839–845.  https://doi.org/10.1007/s00203-016-1278-5 CrossRefPubMedGoogle Scholar
  33. Puopolo G, Cimmino A, Palmieri MC, Giovannini O, Evidente A, Pertot I (2014) Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola. J Appl Microbiol 117:1168–1180.  https://doi.org/10.1111/jam.12611 CrossRefPubMedGoogle Scholar
  34. Romero D, Kolter R (2014) Functional amyloids in bacteria. Int Microbiol 17:65–73.  https://doi.org/10.2436/20.1501.01.208 CrossRefPubMedGoogle Scholar
  35. Sakiyama F, Masaki T (1994) Lysyl endopeptidase of Achromobacter lyticus. In: Barrett AJ (ed) Methods in enzymology. Acad. Press, San Diego, pp 126–137Google Scholar
  36. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedPubMedCentralGoogle Scholar
  37. Shaw D, Mirelman D, Chatterjee NN, Park JT (1970) Ribitol teichoic acid synthesis in bacteriophage resistant mutant of Staphylococcus aureus H. J Biol Chem 245:5101–5106PubMedGoogle Scholar
  38. Silen JL, Frank D, Fujishige A, Bone R, Agard DA (1989) Analysis of prepro-α-lytic protease expression in Escherichia coli reveals that the pro region is required for activity. J Bacteriol 171:1320–1325CrossRefGoogle Scholar
  39. Stepnaya OA, Severin AI, Kudryavtseva AI, Krupianko VI, Kozlovskii AG, Kulaev IS (1992) Enzymes of the lysoamidase bacteriolytic complex: some properties of bacteriolytic proteinase L2. Prikl Biokhim Mikrobiol 28:666–673 (in Russian)Google Scholar
  40. Stepnaya OA, Begunova EA, Tsfasman IM, Kulaev IS (1996a) Bacteriolytic enzyme preparation of lysoamidase. Purification and some properties of bacteriolytic peptidase L1. Biokhimiya 61:656–663 (in Russian)Google Scholar
  41. Stepnaya OA, Begunova EA, Tsfasman IM, Kulaev IS (1996b) Bacteriolytic enzyme preparation lysoamidase: isolation and some physicochemical properties of extracellular muramidase from the bacteria Xanthomonas sp. Biokhimiya 61:648–655 (in Russian)Google Scholar
  42. Stepnaya OA, Tsfasman IM, Logvina IA, Ryazanova LP, Muranova TA, Kulaev IS (2005) Isolation and characterization of a new extracellular bacteriolytic endopeptidase of Lysobacter sp. XL1. Biochemistry (Mosc) 70:1031–1037CrossRefGoogle Scholar
  43. Tishchenko S, Gabdulkhakov A, Melnik B, Kudryakova I, Latypov O, Vasilyeva N, Leontievsky A (2016) Structural studies of component of lysoamidase bacteriolytic complex from Lysobacter sp. XL1. Protein J 35:44–50.  https://doi.org/10.1007/s10930-015-9645-7 CrossRefPubMedGoogle Scholar
  44. Tomada S, Sonego P, Moretto M, Engelen K, Pertot I, Perazzolli M, Puopolo G (2017) Dual RNA-Seq of Lysobacter capsici AZ78 – Phytophthora infestans interaction shows the implementation of attack strategies by the bacterium and unsuccessful oomycete defense responses. Environ Microbiol 19:4113–4125.  https://doi.org/10.1111/1462-2920.13861 CrossRefPubMedGoogle Scholar
  45. Tsai CS, Whitaker DR, Jurásek L, Gillespie DC (1965) Lytic enzymes of Sorangium sp. action of the α- and β-lytic proteases on two bacterial mucopeptides. Can J Biochem 43:1971–1983CrossRefGoogle Scholar
  46. Tsfasman IM, Lapteva YS, Krasovskaya LA, Kudryakova IV, Vasilyeva NV, Granovsky IE, Stepnaya OA (2015) Gene expression of lytic endopeptidases AlpA and AlpB from Lysobacter sp. XL1 in pseudomonads. J Mol Microbiol Biotechnol 25:244–252.  https://doi.org/10.1159/000381266 CrossRefPubMedGoogle Scholar
  47. Vasilyeva NV, Tsfasman IM, Suzina NE, Stepnaya OA, Kulaev IS (2008) Secretion of bacteriolytic endopeptidase L5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles. FEBS J 275:3827–3835.  https://doi.org/10.1111/j.1742-4658.2008.06530.x CrossRefPubMedGoogle Scholar
  48. Vasilyeva NV, Shishkova NA, Marinin LI, Ledova LA, Tsfasman IM, Muranova TA, Stepnaya OA, Kulaev IS (2014) Lytic peptidase L5 of Lysobacter sp. XL1 with broad antimicrobial spectrum. J Mol Microbiol Biotechnol 24:59–66.  https://doi.org/10.1159/000356838 CrossRefPubMedGoogle Scholar
  49. Whitaker DR (1965) Lytic enzymes of Sorangium sp. isolation and enzymatic properties of the α- and β-lytic proteases. Can J Biochem 43:1935–1954CrossRefGoogle Scholar
  50. Xie Y, Wright S, Shen Y, Du L (2012) Bioactive natural products from Lysobacter. Nat Prod Rep 29:1277–1287.  https://doi.org/10.1039/c2np20064c CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yang L, Manithody C, Rezaie AR (2007) The role of autolysis loop in determining the specificity of coagulation proteases. Braz J Med Biol Res 40:1055–1064CrossRefGoogle Scholar
  52. Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li XC, Du L (2007) Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 51:64–72.  https://doi.org/10.1128/AAC.00931-06 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.G.K. Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia
  2. 2.Institute of Protein ResearchRussian Academy of SciencesPushchinoRussia

Personalised recommendations