Advertisement

Pyrroloquinoline quinone-dependent dehydrogenases of acetic acid bacteria

  • Minenosuke Matsutani
  • Toshiharu Yakushi
Mini-Review

Abstract

Pyrroloquinoline quinone (PQQ)-dependent dehydrogenases (quinoproteins) of acetic acid bacteria (AAB), such as the membrane-bound alcohol dehydrogenase (ADH) and the membrane-bound glucose dehydrogenase, contain PQQ as the prosthetic group. Most of them are located on the periplasmic surface of the cytoplasmic membrane, and function as primary dehydrogenases in cognate substance-oxidizing respiratory chains. Here, we have provided an overview on the function and molecular architecture of AAB quinoproteins, which can be categorized into six groups according to the primary amino acid sequences. Based on the genomic data, we discuss the types of quinoproteins found in AAB genome and how they are distributed. Our analyses indicate that a significant number of uncharacterized orphan quinoproteins are present in AAB. By reviewing recent experimental developments, we discuss how to characterize the as-yet-unknown enzymes. Moreover, our bioinformatics studies also provide insights on how quinoproteins have developed into intricate enzymes. ADH comprises at least two subunits: the quinoprotein dehydrogenase subunit encoded by adhA and the cytochrome subunit encoded by adhB, and the genes are located in a polycistronic transcriptional unit. Findings on stand-alone derivatives of adhA encourage us to speculate on a possible route for ADH development in the evolutional history of AAB. A combination of bioinformatics studies on big genome sequencing data and wet studies assisted with genetic engineering would unravel biochemical functions and physiological role of uncharacterized quinoproteins in AAB, or even in unculturable metagenome.

Keywords

Acetic acid bacteria Quinoproteins Pyrroloquinoline quinone Genome sequencing 

Notes

Acknowledgments

We are grateful to Kazunobu Matsushita for critically reading the manuscript. We thank Enago (www.enago.jp) for the English language review.

Funding information

This work was partially supported by the Japan Society for the Promotion of Science KAKENHI Grant (26830126 to MM; 17K07722 to TY).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

In this article, none of the studies that were performed by any of the authors contained human participants or animals.

References

  1. Adachi O, Yakushi T (2016) Membrane-bound dehydrogenases of acetic acid bacteria. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds) Acetic acid bacteria: ecology and physiology. Springer Japan, Tokyo, pp 273–297Google Scholar
  2. Adachi O, Yoshihara N, Tanasupawat S, Toyama H, Matsushita K (2003) Purification and characterization of membrane-bound quinoprotein quinate dehydrogenase. Biosci Biotechnol Biochem 67:2115–2123CrossRefGoogle Scholar
  3. Akagawa M, Minematsu K, Shibata T, Kondo T, Ishii T, Uchida K (2016a) Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein. Sci Rep 6:26723CrossRefGoogle Scholar
  4. Akagawa M, Nakano M, Ikemoto K (2016b) Recent progress in studies on the health benefits of pyrroloquinoline quinone. Biosci Biotechnol Biochem 80:13–22CrossRefGoogle Scholar
  5. Ameyama M, Shinagawa E, Matsushita K, Adachi O (1981) D-Glucose dehydrogenase of Gluconobacter suboxydans: solubilization, purification and characterization. Agric Biol Chem 45:851–861Google Scholar
  6. Ameyama M, Shinagawa E, Matsushita K, Adachi O (1985) Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agric Biol Chem 49:1001–1010Google Scholar
  7. Ano Y, Toyama H, Adachi O, Matsushita K (2008) Energy metabolism of a unique acetic acid bacterium, Asaia bogorensis, that lacks ethanol oxidation activity. Biosci Biotechnol Biochem 72:989–997. CrossRefGoogle Scholar
  8. Ano Y, Hours RA, Akakabe Y, Kataoka N, Yakushi T, Matsushita K, Adachi O (2017) Membrane-bound glycerol dehydrogenase catalyzes oxidation of D-pentonates to 4-keto-D-pentonates, D-fructose to 5-keto-D-fructose, and D-psicose to 5-keto-D-psicose. Biosci Biotechnol Biochem 81:411–418CrossRefGoogle Scholar
  9. Anthony C, Zatman LJ (1967) The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: a new oxidoreductase prosthetic group. Biochem J 104:960–969CrossRefGoogle Scholar
  10. Arakawa K, Sugino F, Kodama K, Ishii T, Kinashi H (2005) Cyclization mechanism for the synthesis of macrocyclic antibiotic lankacidin in Streptomyces rochei. Chem Biol 12:249–256CrossRefGoogle Scholar
  11. Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37:5768–5783CrossRefGoogle Scholar
  12. Berry A, Lee C, Mayer AF, Shinjoh M (2003) Micribial production of L-ascorbic acid. EP2348113Google Scholar
  13. Buchert J (1991) A xylose-oxidizing membrane-bound aldose dehydrogenase of Gluconobacter oxydans ATCC 621. J Biotechnol 18:103–113CrossRefGoogle Scholar
  14. Cozier GE, Anthony C (1995) Structure of the quinoprotein glucose dehydrogenase of Escherichia coli modelled on that of methanol dehydrogenase from Methylobacterium extorquens. Biochem J 312(Pt 3):679–685CrossRefGoogle Scholar
  15. Deppenmeier U, Hoffmeister M, Prust C (2002) Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 60:233–242CrossRefGoogle Scholar
  16. Elliott EJ, Anthony C (1988) The interaction between methanol dehydrogenase and cytochrome c in the acidophilic methylotroph Acetobacter methanolicus. Microbiology 134:369–377CrossRefGoogle Scholar
  17. Gómez-Manzo S, Contreras-Zentella M, González-Valdez A, Sosa-Torres M, Arreguín-Espinoza R, Escamilla-Marván E (2008) The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus. Int J Food Microbiol 125:71–78CrossRefGoogle Scholar
  18. Gómez-Manzo S, Chavez-Pacheco JL, Contreras-Zentella M, Sosa-Torres ME, Arreguín-Espinosa R, Pérez de la Mora M, Membrillo-Hernández J, Escamilla JE (2010) Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c. J Bacteriol 192:5718–5724CrossRefGoogle Scholar
  19. Hann RM, Tilden EB, Hudson CS (1938) The oxidation of sugar alcohols by Acetobacter suboxydans. J Am Chem Soc 60:1201–1203CrossRefGoogle Scholar
  20. Hauge JG (1964) Glucose dehydrogenase of Bacterium anitratum: an enzyme with a novel prosthetic group. J Biol Chem 239:3630–3639PubMedGoogle Scholar
  21. Higashiura N, Hadano H, Hirakawa H, Matsutani M, Takebe S, Matsushita K, Azuma Y (2014) Draft genomic DNA sequence of the facultatively methylotrophic bacterium Acidomonas methanolica type strain MB58. FEMS Microbiol Lett 351:9–13CrossRefGoogle Scholar
  22. Hölscher T, Görisch H (2006) Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J Bacteriol 188:7668–7676CrossRefGoogle Scholar
  23. Hölscher T, Weinert-Sepalage D, Görisch H (2007) Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology 153:499–506CrossRefGoogle Scholar
  24. Illeghems K, De Vuyst L, Weckx S (2013) Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem. BMC Genomics 14:526CrossRefGoogle Scholar
  25. Inoue T, Sunagawa M, Mori A, Imai C, Fukuda M, Takagi M, Yano K (1989) Cloning and sequencing of the gene encoding the 72-kilodalton dehydrogenase subunit of alcohol dehydrogenase from Acetobacter aceti. J Bacteriol 171:3115–3122CrossRefGoogle Scholar
  26. Keitel T, Diehl A, Knaute T, Stezowski JJ, Hohne W, Görisch H (2000) X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity. J Mol Biol 297:961–974CrossRefGoogle Scholar
  27. Kim KH, Paetzel M (2011) Crystal structure of Escherichia coli BamB, a lipoprotein component of the beta-barrel assembly machinery complex. J Mol Biol 406:667–678CrossRefGoogle Scholar
  28. Klinman JP, Bonnot F (2014) Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chem Rev 114:4343–4365CrossRefGoogle Scholar
  29. Kondo K, Beppu T, Horinouchi S (1995) Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus. J Bacteriol 177:5048–5055CrossRefGoogle Scholar
  30. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  31. Masud U, Matsushita K, Theeragool G (2010) Cloning and functional analysis of adhS gene encoding quinoprotein alcohol dehydrogenase subunit III from Acetobacter pasteurianus SKU1108. Int J Food Microbiol 138:39–49CrossRefGoogle Scholar
  32. Matsumoto N, Hattori H, Matsutani M, Matayoshi C, Toyama H, Kataoka N, Yakushi T, Matsushita K (2018) A single-nucleotide insertion in a drug transporter gene induces a thermotolerance phenotype in Gluconobacter frateurii by increasing the NADPH/NADP+ ratio via metabolic change. Appl Environ Microbiol 84:e00354–e00318CrossRefGoogle Scholar
  33. Matsumura H, Umezawa K, Takeda K, Sugimoto N, Ishida T, Samejima M, Ohno H, Yoshida M, Igarashi K, Nakamura N (2014) Discovery of a eukaryotic pyrroloquinoline quinone-dependent oxidoreductase belonging to a new auxiliary activity family in the database of carbohydrate-active enzymes. PLoS One 9:e104851CrossRefGoogle Scholar
  34. Matsushita K, Matsutani M (2016) Distribution, evolution, and physiology of oxidative fermentation. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds) Acetic acid bacteria: ecology and physiology. Springer Japan, Tokyo, pp 159–178Google Scholar
  35. Matsushita K, Takahashi K, Takahashi M, Ameyama M, Adachi O (1992) Methanol and ethanol oxidase respiratory chains of the methylotrophic acetic acid bacterium, Acetobacter methanolicus. J Biochem 111:739–747CrossRefGoogle Scholar
  36. Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. In: Rose AH, Tempest DW (eds) Adv Microb Physiol, vol 36. Academic Press, London, pp 247–301Google Scholar
  37. Matsushita K, Yakushi T, Toyama H, Shinagawa E, Adachi O (1996) Function of multiple heme C moieties in intramolecular electron transport and ubiquinone reduction in the quinohemoprotein alcohol dehydrogenase-cytochrome c complex of Gluconobacter suboxydans. J Biol Chem 271:4850–4857CrossRefGoogle Scholar
  38. Matsushita K, Toyama H, Yamada M, Adachi O (2002) Quinoproteins: structure, function, and biotechnological applications. Appl Microbiol Biotechnol 58:13–22CrossRefGoogle Scholar
  39. Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966CrossRefGoogle Scholar
  40. Matsutani M, Hirakawa H, Yakushi T, Matsushita K (2011) Genome-wide phylogenetic analysis of Gluconobacter, Acetobacter, and Gluconacetobacter. FEMS Microbiol Lett 315:122–128CrossRefGoogle Scholar
  41. Matsutani M, Fukushima K, Kayama C, Arimitsu M, Hirakawa H, Toyama H, Adachi O, Yakushi T, Matsushita K (2014) Replacement of a terminal cytochrome c oxidase by ubiquinol oxidase during the evolution of acetic acid bacteria. Biochim Biophys Acta 1837:1810–1820CrossRefGoogle Scholar
  42. Matsutani M, Hirakawa H, Hiraoka E, Theeragool G, Yakushi T, Matsushita K (2016) Complete genome sequencing and comparative genomic analysis of the thermotolerant acetic acid bacterium, Acetobacter pasteurianus SKU1108, provide a new insight into thermotolerance. Microbes Environ 31:395–400CrossRefGoogle Scholar
  43. Meyer M, Schweiger P, Deppenmeier U (2013) Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans. Appl Microbiol Biotechnol 97:3457–3466CrossRefGoogle Scholar
  44. Mientus M, Kostner D, Peters B, Liebl W, Ehrenreich A (2017) Characterization of membrane-bound dehydrogenases of Gluconobacter oxydans 621H using a new system for their functional expression. Appl Microbiol Biotechnol 101:3189–3200CrossRefGoogle Scholar
  45. Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T (2002) Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci Biotechnol Biochem 66:262–270CrossRefGoogle Scholar
  46. Murooka Y (2016) Acetic acid bacteria in production of vinegars and traditional fermented foods. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds) Acetic acid bacteria: ecology and physiology. Springer Japan, Tokyo, pp 51–72Google Scholar
  47. Nakano S, Ebisuya H (2016) Physiology of Acetobacter and Komagataeibacter spp.: acetic acid resistance mechanism in acetic acid fermentation. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds) Acetic acid bacteria: ecology and physiology. Springer Japan, Tokyo, pp 223–234Google Scholar
  48. Ogino H, Azuma Y, Hosoyama A, Nakazawa H, Matsutani M, Hasegawa A, Otsuyama K, Matsushita K, Fujita N, Shirai M (2011) Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. J Bacteriol 193:6997–6998CrossRefGoogle Scholar
  49. Oubrie A, Rozeboom HJ, Kalk KH, Olsthoorn AJ, Duine JA, Dijkstra BW (1999) Structure and mechanism of soluble quinoprotein glucose dehydrogenase. EMBO J 18:5187–5194CrossRefGoogle Scholar
  50. Pedraza RO (2016) Acetic acid bacteria as plant growth promoters. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds) Acetic acid bacteria: ecology and physiology. Springer Japan, Tokyo, pp 101–120Google Scholar
  51. Peters B, Mientus M, Kostner D, Junker A, Liebl W, Ehrenreich A (2013) Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Appl Microbiol Biotechnol 97:6397–6412CrossRefGoogle Scholar
  52. Peters B, Mientus M, Kostner D, Daniel R, Liebl W, Ehrenreich A (2017) Expression of membrane-bound dehydrogenases from a mother of vinegar metagenome in Gluconobacter oxydans. Appl Microbiol Biotechnol 101:7901–7912CrossRefGoogle Scholar
  53. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200CrossRefGoogle Scholar
  54. Shinagawa E, Ano Y, Yakushi T, Adachi O, Matsushita K (2009) Solubilization, purification, and properties of membrane-bound D-glucono-δ-lactone hydrolase from Gluconobacter oxydans. Biosci Biotechnol Biochem 73:241–244CrossRefGoogle Scholar
  55. Shinjoh M, Tomiyama N, Asakura A, Hoshino T (1995) Cloning and nucleotide sequencing of the membrane-bound L-sorbosone dehydrogenase gene of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans. Appl Environ Microbiol 61:413–420PubMedPubMedCentralGoogle Scholar
  56. Sievers M, Sellmer S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15:386–392CrossRefGoogle Scholar
  57. Takemura H, Tsuchida T, Yoshinaga F, Matsushita K, Adachi O (1994) Prosthetic group of aldehyde dehydrogenase in acetic acid bacteria not pyrroloquinoline quinone. Biosci Biotechnol Biochem 58:2082–2083CrossRefGoogle Scholar
  58. Tamaki T, Fukaya M, Takemura H, Tayama K, Okumura H, Kawamura Y, Nishiyama M, Horinouchi S, Beppu T (1991) Cloning and sequencing of the gene cluster encoding two subunits of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes. Biochim Biophys Acta 1088:292–300CrossRefGoogle Scholar
  59. Thurner C, Vela C, Thony-Meyer L, Meile L, Teuber M (1997) Biochemical and genetic characterization of the acetaldehyde dehydrogenase complex from Acetobacter europaeus. Arch Microbiol 168:81–91CrossRefGoogle Scholar
  60. Toyama H, Mathews FS, Adachi O, Matsushita K (2004) Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. Arch Biochem Biophys 428:10–21CrossRefGoogle Scholar
  61. Toyama H, Chen ZW, Fukumoto M, Adachi O, Matsushita K, Mathews FS (2005) Molecular cloning and structural analysis of quinohemoprotein alcohol dehydrogenase ADH-IIG from Pseudomonas putida HK5. J Mol Biol 352:91–104CrossRefGoogle Scholar
  62. Toyama H, Furuya N, Saichana I, Ano Y, Adachi O, Matsushita K (2007) Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from “Gluconobacter dioxyacetonicus” IFO 3271: molecular properties and gene disruption. Appl Environ Microbiol 73:6551–6556CrossRefGoogle Scholar
  63. Trcek J, Matsushita K (2013) A unique enzyme of acetic acid bacteria, PQQ-dependent alcohol dehydrogenase, is also present in Frateuria aurantia. Appl Microbiol Biotechnol 97:7369–7376CrossRefGoogle Scholar
  64. Trcek J, Toyama H, Czuba J, Misiewicz A, Matsushita K (2006) Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol 70:366–373CrossRefGoogle Scholar
  65. Uhlig H, Karbaum K, Steudel A (1986) Acetobacter methanolicus sp. nov., an acidophilic facultatively methylotrophic bacterium. Int J Syst Evol Microbiol 36:317–322Google Scholar
  66. Umezawa K, Takeda K, Ishida T, Sunagawa N, Makabe A, Isobe K, Koba K, Ohno H, Samejima M, Nakamura N, Igarashi K, Yoshida M (2015) A novel pyrroloquinoline quinone-dependent 2-keto-D-glucose dehydrogenase from Pseudomonas aureofaciens. J Bacteriol 197:1322–1329CrossRefGoogle Scholar
  67. Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86:1257–1265CrossRefGoogle Scholar
  68. Yakushi T, Fukunari S, Kodama T, Matsutani M, Nina S, Kataoka N, Theeragool G, Matsushita K (2018a) Role of a membrane-bound aldehyde dehydrogenase complex AldFGH in acetic acid fermentation with Acetobacter pasteurianus SKU1108. Appl Microbiol Biotechnol 102:4549–4561CrossRefGoogle Scholar
  69. Yakushi T, Komatsu K, Matsutani M, Kataoka N, Vangnai AS, Toyama H, Adachi O, Matsushita K (2018b) Improved heterologous expression of the membrane-bound quinoprotein quinate dehydrogenase from Gluconobacter oxydans. Protein Expr Purif 145:100–107CrossRefGoogle Scholar
  70. Yakushi T, Terada Y, Ozaki S, Kataoka N, Akakabe Y, Adachi O, Matsutani M, Matsushita K (2018c) Aldopentoses as new substrates for the membrane-bound, pyrroloquinoline quinone-dependent glycerol (polyol) dehydrogenase of Gluconobacter sp. Appl Microbiol Biotechnol 102:3159–3171CrossRefGoogle Scholar
  71. Yamada Y (2016) Systematics of acetic acid bacteria. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds) Acetic acid bacteria: ecology and physiology. Springer Japan, Tokyo, pp 1–50Google Scholar
  72. Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Agricultural Science, Graduate School of Science and Technology for InnovationYamaguchi UniversityYamaguchiJapan
  2. 2.Department of Biological Chemistry, Faculty of AgricultureYamaguchi UniversityYamaguchiJapan
  3. 3.Research Center for Thermotolerant Microbial ResourcesYamaguchi UniversityYamaguchiJapan

Personalised recommendations