Applied Microbiology and Biotechnology

, Volume 102, Issue 23, pp 10027–10041 | Cite as

Secretory expression of β-mannanase in Saccharomyces cerevisiae and its high efficiency for hydrolysis of mannans to mannooligosaccharides

  • Junquan Liu
  • Abdul Basit
  • Ting Miao
  • Fengzhen Zheng
  • Hang Yu
  • Yan Wang
  • Wei JiangEmail author
  • Yunhe CaoEmail author
Biotechnologically relevant enzymes and proteins


Degradation of mannans is a key process in the production of foods and prebiotics. β-Mannanase is the key enzyme that hydrolyzes 1,4-β-D-mannosidic linkages in mannans. Heterogeneous expression of β-mannanase in Pichia pastoris systems is widely used; however, Saccharomyces cerevisiae expression systems are more reliable and safer. We optimized β-mannanase gene from Aspergillus sulphureus and expressed it in five S. cerevisiae strains. Haploid and diploid strains, and strains with constitutive promoter TEF1 or inducible promoter GAL1, were tested for enzyme expression in synthetic auxotrophic or complex medium. Highest efficiency expression was observed for haploid strain BY4741 integrated with β-mannanase gene under constitutive promoter TEF1, cultured in complex medium. In fed-batch culture in a fermentor, enzyme activity reached ~ 24 U/mL after 36 h, and production efficiency reached 16 U/mL/day. Optimal enzyme pH was 2.0–7.0, and optimal temperature was 60 °C. In studies of β-mannanase kinetic parameters for two substrates, locust bean gum galactomannan (LBG) gave Km = 24.13 mg/mL and Vmax = 715 U/mg, while konjac glucomannan (KGM) gave Km = 33 mg/mL and Vmax = 625 U/mg. One-hour hydrolysis efficiency values were 57% for 1% LBG, 74% for 1% KGM, 39% for 10% LBG, and 53% for 10% KGM. HPLC analysis revealed that the major hydrolysis products were the oligosaccharides mannose, mannobiose, mannotriose, mannotetraose, mannopentaose, and mannohexaose. Our findings show that this β-mannanase has high efficiency for hydrolysis of mannans to mannooligosaccharides, a type of prebiotic, suggesting strong potential application in food industries.


β-Mannanase Expression Saccharomyces cerevisiae Mannans Mannooligosaccharides 



This study was supported by Scientific and Technical Supporting Programmes (2013BAD10B01). The authors are grateful to Dr. S. Anderson for the English editing of the manuscript and Prof. Huiqiang Lou for donating strains.

Compliance with ethical standards

Conflict of interest

The authors declare that have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

253_2018_9355_MOESM1_ESM.pdf (424 kb)
ESM 1 (PDF 424 kb)


  1. Basit A, Liu J, Rahim K, Jiang W, Lou H (2018) Thermophilic xylanases: from bench to bottle. Crit Rev Biotechnol 17:1–14Google Scholar
  2. Blibech M, Chaari F, Bhiri F, Dammak I, Ghorbel RE, Chaabouni SE (2011) Production of manno-oligosaccharides from locust bean gum using immobilized Penicillium occitanis mannanase. J Mol Catal B Enzym 73:111–115Google Scholar
  3. Brake AJ, Merryweather JP, Corr DG (1984) α-Factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. PNAS 81:4642–4646CrossRefGoogle Scholar
  4. Cai H, Shi P, Huang H, Luo H, Bai Y, Yang P, Meng K, Yao B (2011a) An acidic beta-mannanase from Penicillium sp. C6: gene cloning and over-expression in Pichia pastoris. World J Microbiol Biotechnol 27:2813–2819CrossRefGoogle Scholar
  5. Cai H, Shi P, Luo H, Bai Y, Huang H, Yang P, Yao B (2011b) Acidic β-mannanase from Penicillium pinophilum C1: cloning, characterization and assessment of its potential for animal feed application. J Biosci Bioeng 112:551–557CrossRefGoogle Scholar
  6. Celik E, Calik P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30:1108–1118CrossRefGoogle Scholar
  7. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66CrossRefGoogle Scholar
  8. Chai SY, Abu Bakar FD, Mahadi NM, Murad AMA (2016) A thermotolerant endo-1,4-beta-mannanase from Trichoderma virens UKM1: cloning, recombinant expression and characterization. J Mol Catal B Enzym 125:49–57CrossRefGoogle Scholar
  9. Chauhan PS, Puri N, Sharma P, Gupta N (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biot 93:1817–1830CrossRefGoogle Scholar
  10. Chauhan PS, Sharma P, Puri N, Gupta N (2014) Purification and characterization of an alkali-thermostable beta-mannanase from Bacillus nealsonii PN-11 and its application in mannooligosaccharides preparation having prebiotic potential. Eur Food Res Technol 238:927–936CrossRefGoogle Scholar
  11. Chauhan PS, Tripathi SP, Sangamwar AT, Puri N, Sharma P, Gupta N (2015) Cloning, molecular modeling, and docking analysis of alkali-thermostable β-mannanase from Bacillus nealsonii PN-11. Appl Microbiol Biotechnol 99:8917–8925CrossRefGoogle Scholar
  12. Chen XL, Cao YH, Ding YH, Lu WQ, Li DF (2007) Cloning, functional expression and characterization of Aspergillus sulphureus beta-mannanase in Pichia pastoris. J Biotechnol 128:452–461CrossRefGoogle Scholar
  13. Chen XL, Qiao JY, Yu HF, Cao YH (2009) Overexpression of an optimized Aspergillus sulphureus beta-mannanase gene in Pichia pastoris. Biologia 64:235–238CrossRefGoogle Scholar
  14. Da Silva NA, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12:197–214CrossRefGoogle Scholar
  15. De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biot 87:1617–1631CrossRefGoogle Scholar
  16. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216CrossRefGoogle Scholar
  17. Duruksu G, Ozturk B, Biely P, Bakir U, Ogel ZB (2009) Cloning, expression and characterization of endo-beta-1,4-mannanase from Aspergillus fumigatus in Aspergillus sojae and Pichia pastoris. Biotechnol Prog 25:271–276CrossRefGoogle Scholar
  18. Eneyskaya EV, Sundqvist G, Golubev AM, Ibatullin FM, Ivanen DR, Shabalin KA, Brumer H, Kulminskaya AA (2009) Transglycosylating and hydrolytic activities of the beta-mannosidase from Trichoderma reesei. Biochimie 91:632–638CrossRefGoogle Scholar
  19. Ergun BG, Calik P (2016) Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 39:1–36CrossRefGoogle Scholar
  20. Gatignol A, Dassain M, Tiraby G (1990) Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance. Gene 91:35–41CrossRefGoogle Scholar
  21. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275CrossRefGoogle Scholar
  22. He XP, Liu N, Li WW, Zhang ZY, Zhang BR, Ma YH (2008) Inducible and constitutive expression of a novel thermostable alkaline beta-mannanase from alkaliphilic Bacillus sp. N16-5 in Pichia pastoris and characterization of the recombinant enzyme. Enzym Microb Technol 43:13–18CrossRefGoogle Scholar
  23. Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biot 86:403–417CrossRefGoogle Scholar
  24. Ishii J, Okazaki F, Djohan AC, Hara KY, Asai-Nakashima N, Teramura H, Andriani A, Tominaga M, Wakai S, Kahar P, Yopi PB, Ogino C, Kondo A (2016) From mannan to bioethanol: cell surface co-display of beta-mannanase and beta-mannosidase on yeast Saccharomyces cerevisiae. Biotechnol Biofuels 9:188. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Katrolia P, Zhou P, Zhang P, Yan Q, Li Y, Jiang Z, Xu H (2012) High level expression of a novel β-mannanase from Chaetomium sp. exhibiting efficient mannan hydrolysis. Carbohydr Polym 87:480–490CrossRefGoogle Scholar
  26. Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478CrossRefGoogle Scholar
  27. Kung LA, Tao SC, Qian J, Smith MG, Snyder M, Zhu H (2009) Global analysis of the glycoproteome in Saccharomyces cerevisiae reveals new roles for protein glycosylation in eukaryotes. Mol Syst Biol 5:308. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lee C, Kim J, Shin SG, Hwang S (2006) Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol 123:273–280CrossRefGoogle Scholar
  29. Liao H, Li S, Zheng H, Wei Z, Liu D, Raza W, Shen Q, Xu Y (2014) A new acidophilic thermostable endo-1,4-β-mannanase from Penicillium oxalicum GZ-2: cloning, characterization and functional expression in Pichia pastoris. BMC Biotechnol 14:90CrossRefGoogle Scholar
  30. Li JF, Zhao SG, Tang CD, Wang JQ, Wu MC (2012) Cloning and functional expression of an acidophilic β-mannanase gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris. J Agric Food Chem 60:765–773CrossRefGoogle Scholar
  31. Li YX, Yi P, Wang NN, Liu J, Liu XQ, Yan QJ, Jiang ZQ (2017) High level expression of β-mannanase (RmMan5A) in Pichia pastoris for partially hydrolyzed guar gum production. Int J Biol Macromol 105:1171–1179CrossRefGoogle Scholar
  32. Luo H, Wang Y, Wang H, Yang J, Yang Y, Huang H, Yang P, Bai Y, Shi P, Fan Y, Yao B (2009) A novel highly acidic beta-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl Microbiol Biotechnol 82:453–461CrossRefGoogle Scholar
  33. Lu WQ, Li DF, Wu YB (2003) Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzyme Microb Tech 32:305–311CrossRefGoogle Scholar
  34. Malherbe AR, Rose SH, Viljoen-Bloom M, van Zyl WH (2014) Expression and evaluation of enzymes required for the hydrolysis of galactomannan. J Ind Microbiol Biotechnol 41:1201–1209CrossRefGoogle Scholar
  35. Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178CrossRefGoogle Scholar
  36. Pannala VR, Bhat PJ, Bhartiya S, Venkatesh KV (2010) Systems biology of GAL regulon in Saccharomyces cerevisiae. Wiley Interdiscip Rev-Syst Biol 2:98–106CrossRefGoogle Scholar
  37. Partow S, Siewers V, Bjorn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27:955–964CrossRefGoogle Scholar
  38. Perez-Torrado R, Gamero E, Gomez-Pastor R, Garre E, Aranda A, Matallana E (2015) Yeast biomass, an optimised product with myriad applications in the food industry. Trends Food Sci Tech 46:167–175CrossRefGoogle Scholar
  39. Pham TA, Berrin JG, Record E, To KA, Sigoillot JC (2010) Hydrolysis of softwood by Aspergillus mannanase: role of a carbohydrate-binding module. J Biotechnol 148:163–170CrossRefGoogle Scholar
  40. Porro D, Gasser B, Fossati T, Maurer M, Branduardi P, Sauer M, Mattanovich D (2011) Production of recombinant proteins and metabolites in yeasts. Appl Microbiol Biot 89:939–948CrossRefGoogle Scholar
  41. Rahmani N, Kashiwagi N, Lee J, Niimi-Nakamura S, Matsumoto H, Kahar P, Lisdiyanti P, Yopi PB, Ogino C, Kondo A (2017) Mannan endo-1,4-beta-mannosidase from Kitasatospora sp. isolated in Indonesia and its potential for production of mannooligosaccharides from mannan polymers. AMB Express 7:100. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61(1):263–289CrossRefGoogle Scholar
  43. Setati ME, Ademark P, van Zyl WH, Hahn-Hagerdal B, Stalbrand H (2001) Expression of the Aspergillus aculeatus endo-beta-1,4-mannanase encoding gene (man1) in Saccharomyces cerevisiae and characterization of the recombinant enzyme. Protein Expr Purif 21:105–114CrossRefGoogle Scholar
  44. Silva VC, Peres MFS, Gattas EAL (2009) Application of methylotrophic yeast Pichia pastoris in the field of food industry - a review. J Food Agric Environ 7:268–273Google Scholar
  45. Srivastava PK, Kapoor M (2017) Production, properties, and applications of endo-beta-mannanases. Biotechnol Adv 35:1–19CrossRefGoogle Scholar
  46. St John TP, Davis RW (1981) The organization and transcription of the galactose gene cluster of Saccharomyces. J Mol Biol 152:285–315CrossRefGoogle Scholar
  47. Tester RF, Al-Ghazzewi FH (2013) Mannans and health, with a special focus on glucomannans. Food Res Int 50:384–391CrossRefGoogle Scholar
  48. van Zyl WH, Rose SH, Trollope K, Gorgens JF (2010) Fungal beta-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem 45:1203–1213CrossRefGoogle Scholar
  49. Wang MF, You SP, Zhang SS, Qi W, Liu ZH, Wu WN, Su RX, He ZM (2013) Purification, characterization, and production of beta-mannanase from Bacillus subtilis TJ-102 and its application in gluco-mannooligosaccharides preparation. Eur Food Res Technol 237:399–408CrossRefGoogle Scholar
  50. Ximenes EA, Chen HZ, Kataeva IA, Cotta MA, Felix CR, Ljungdahl LG, Li XL (2005) A mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules. Can J Microbiol 51:559–568CrossRefGoogle Scholar
  51. Xu B, Sellos D, Janson JC (2002) Cloning and expression in Pichia pastoris of a blue mussel (Mytilus edulis) beta-mannanase gene. Eur J Biochem 269:1753–1760CrossRefGoogle Scholar
  52. Yamabhai M, Sak-Ubol S, Srila W, Haltrich D (2016) Mannan biotechnology: from biofuels to health. Crit Rev Biotechnol 36:32–42CrossRefGoogle Scholar
  53. Yang H, Shi P, Lu H, Wang H, Luo H, Huang H, Yang P, Yao B (2015) A thermophilic β-mannanase from Neosartorya fischeri P1 with broad pH stability and significant hydrolysis ability of various mannan polymers. Food Chem 173:283–289CrossRefGoogle Scholar
  54. Zhang YL, Ju JS, Peng H, Gao F, Zhou C, Zeng Y, Xue YF, Li Y, Henrissat B, Gao GF, Ma YH (2008) Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J Biol Chem 283:31551–31558CrossRefGoogle Scholar
  55. Zhao J, Shi P, Luo H, Yang P, Zhao H, Bai Y, Huang H, Wang H, Yao B (2010) An acidophilic and acid-stable beta-mannanase from Phialophora sp. p13 with high mannan hydrolysis activity under simulated gastric conditions. J Agric Food Chem 58:3184–3190CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-BiotechnologyChina Agricultural UniversityBeijingChina
  2. 2.Liaoning Union Pharmaceutical Company LimitedBenxiChina
  3. 3.State Key Laboratory of Animal NutritionChina Agricultural UniversityBeijingChina

Personalised recommendations