Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 21, pp 9105–9119 | Cite as

Endophytic fungi isolated from medicinal plants: future prospects of bioactive natural products from Tabebuia/Handroanthus endophytes

  • Omar Cabezas Gómez
  • Jaine Honorata Hortolan Luiz
Mini-Review

Abstract

Medicinal plants are a rich source of natural products used to treat many diseases; therefore, they are the basis for a new drug discovery. Plants are capable of generating different bioactive secondary metabolites, but a large amount of botanical material is often necessary to obtain small amounts of the target substance. Nowadays, many medicinal plants are becoming rather scarce. For this reason, it is important to point out the interactions between endophytic microorganisms and the host plant, because endophytes are able to produce highly diverse compounds, including those from host plants that have important biological activities. Thence, this review aims at presenting the richness in bioactive compounds of the medicinal plants from Tabebuia and Handroanthus genera, as well as important aspects about endophyte-plant interactions, with emphasis on the production of bioactive compounds by endophytic fungi, which has been isolated from various medicinal plants for such a purpose. Furthermore, bio-prospection of natural products synthesized by endophytes isolated from the aforementioned genera used in traditional medicine could be used to treat illnesses.

Keywords

Tabebuia Handroanthus Endophytic fungi Medicinal plant Natural product 

Notes

Acknowledgments

Omar C. Gomez thanks to the Program PEC-PG (Programa de Estudantes-Convênio de Pós-Graduação) of the CAPES/CNPq—Brazil.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any human or animal studies.

References

  1. Anesini C, Perez C (1993) Screening of plants used in Argentine folk medicine for antimicrobial activity. J Ethnopharmacol 39:119–128.  https://doi.org/10.1016/0378-8741(93)90027-3 CrossRefPubMedGoogle Scholar
  2. Böhler T, Nolting J, Gurragchaa P, Lupescu A, Neumayer HH, Budde K, Kamar N, Klupp J (2008) Tabebuia avellanedae extracts inhibit IL-2-independent T-lymphocyte activation and proliferation. Transpl Immunol 18:319–323.  https://doi.org/10.1016/j.trim.2007.08.005 CrossRefPubMedGoogle Scholar
  3. Braga de Oliveira A, Raslan DS, de Oliveira GG, Maia JGS (1993) Lignans and naphthoquinones from Tabebuia incana. Phytochemistry 34:1409–1412.  https://doi.org/10.1016/0031-9422(91)80039-4 CrossRefGoogle Scholar
  4. Brandão GC, Kroon EG, Santos JR, Stehmann JR, Lombardi JA, Oliveira AB (2010) Antiviral activities of plants occurring in the state of Minas Gerais, Brazil. Part 2. Screening Bignoniaceae species. Rev Bras Farmacogn 20(5):742–750.  https://doi.org/10.1590/S0102-695X2010005000035 CrossRefGoogle Scholar
  5. Camehl I, Drzewiecki C, Vadassery J, Shahollari B, Sherameti I, Forzani C, Munnik T, Hirt H, Oelmüller R (2011) The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog 7:e1002051.  https://doi.org/10.1371/journal.ppat.1002051 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carvalho PLN, Silva EO, Chagas-Paula DA, Luiz JHH, Ikegaki M (2016) Importance and implications of the production of phenolic secondary metabolities by endophytic fungi: a mini-review. Mini Rev Med Chem 16(4):259–271.  https://doi.org/10.2174/1389557515666151016123923 CrossRefGoogle Scholar
  7. Cassady JM, Chan KK, Floss HG, Leistner E (2004) Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull 52(1):1–26.  https://doi.org/10.1248/cpb.52.1 CrossRefPubMedGoogle Scholar
  8. Castellanos JRG, Prieto JM, Heinrich M (2009) Red Lapacho (Tabebuia impetiginosa)—a global ethnopharmacological commodity? J Ethnopharmacol 121:1–13.  https://doi.org/10.1016/j.jep.2008.10.004 CrossRefGoogle Scholar
  9. Chen S-L, Yu H, Luo H-M, Wu Q, Li C-F, Steinmetz A (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11(1):37.  https://doi.org/10.1186/s13020-016-0108-7 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chithra S, Jasim B, Anisha C, Mathew J, Radhakrishnan EK (2014) LC-MS/MS based identification of piperine production by endophytic Mycosphaerella sp. PF13 from Piper nigrum. Appl Biochem Biotechnol 173(1):30–35.  https://doi.org/10.1007/s12010-014-0832-3 CrossRefPubMedGoogle Scholar
  11. Choi W, Um M, Ahn J, Jung C, Park M, Ha T (2014) Ethanolic extract of Taheebo attenuates increase in body weight and fatty liver in mice fed a high-fat diet. Molecules 19(10):16013–16023.  https://doi.org/10.3390/molecules191016013 CrossRefPubMedGoogle Scholar
  12. Coelho JM, Antoniolli AB, Nunes e Silva D, TMMB C, ERJC P, Odashiro NA (2010) O efeito da sulfadiazina de prata, extrato de ipê-roxo e extrato de barbatimão na cicatrização de feridas cutâneas em ratos. Rev Col Bras Cir 37:45–51.  https://doi.org/10.1590/S0100-69912010000100010 CrossRefPubMedGoogle Scholar
  13. Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83(5):913–920.  https://doi.org/10.1016/j.fitote.2012.04.009 CrossRefPubMedGoogle Scholar
  14. Cui J, Guo T, Chao J, Wang M, Wang J (2016) Potential of the endophytic fungus Phialocephala fortinii Rac56 found in Rhodiola plants to produce salidroside and p-tyrosol. Molecules 21(4):502.  https://doi.org/10.3390/molecules21040502 CrossRefPubMedGoogle Scholar
  15. De Medeiros PM, Ladio AH, De Albuquerque UP (2013) Patterns of medicinal plant use by inhabitants of Brazilian urban and rural areas: a macroscale investigation based on available literature. J Ethnopharmacol 150:729–746.  https://doi.org/10.1016/j.jep.2013.09.026 CrossRefPubMedGoogle Scholar
  16. De Melo JG, De Sousa Araújo TA, De Almeida Castro VTN, De Vasconcelos Cabral DL, Do Desterro Rodrigues M, Do Nascimento SC, De Amorim ELC, De Albuquerque UP (2010) Antiproliferative activity, antioxidant capacity and tannin content in plants of semi-arid northeastern Brazil. Molecules 15:8534–8542.  https://doi.org/10.3390/molecules15128534 CrossRefGoogle Scholar
  17. De Melo JG, Santos AG, De Amorim ELC, Do Nascimento SC, De Albuquerque UP (2011) Medicinal plants used as antitumor agents in Brazil: an ethnobotanical approach. Evid Based Complement Alternat Med 2011:1–14.  https://doi.org/10.1155/2011/365359 CrossRefGoogle Scholar
  18. Devari S, Jaglan S, Kumar M, Deshidi R, Guru S, Bhushan S, Kushwaha M, Gupta AP, Gandhi SG, Sharma JP, Taneja SC, Vishwakarma RA, Shah BA (2014) Capsaicin production by Alternaria alternata, an endophytic fungus from Capsicum annum; LC-ESI-MS/MS analysis. Phytochemestry 98:183–189.  https://doi.org/10.1016/j.phytochem.2013.12.001 CrossRefGoogle Scholar
  19. El-Hawary SS, Mohammed R, Abouzid SF, Bakeer W, Ebel R, Sayed AM, Rateb ME (2016) Solamargine production by a fungal endophyte of Solanum nigrum. J Appl Microbiol 120(4):900–911.  https://doi.org/10.1111/jam.13077 CrossRefPubMedGoogle Scholar
  20. Ferraz-Filha ZS, Araujo COM, Ferrari FC, Dutra IPAR, Saúde-Guimarães DA (2016) Tabebuia roseoalba: in vivo hypouricemic and anti-inflammatory effects of its ethanolic extract and constituents. Planta Med 82:1395–1402.  https://doi.org/10.1055/s-0042-105878 CrossRefPubMedGoogle Scholar
  21. Ferreira Júnior WS, Ladio AH, De Albuquerque UP (2011) Resilience and adaptation in the use of medicinal plants with suspected anti-inflammatory activity in the Brazilian Northeast. J Ethnopharmacol 138:238–252.  https://doi.org/10.1016/j.jep.2011.09.018 CrossRefGoogle Scholar
  22. Ferreira-Júnior JC, Conserva LM, Lemos RPL, Omena-Neta GC, Cavalcante-Neto A, Barreto E (2015) Isolation of a dihydrobenzofuran lignin, icariside E4, with an antinociceptive effect from Tabebuia roseo-alba (Ridley) Sandwith (Bignoniaceae) bark. Arch Pharm Res 38:950–956.  https://doi.org/10.1007/s12272-014-0468-4 CrossRefPubMedGoogle Scholar
  23. Freitas AE, Machado DG, Budni J, Neis VB, Balen GO, Lopes MW, De Souza LF, Veronezi PO, Heller M, Micke GA, Pizzolatti MG, Dafre AL, Leal RB, Rodrigues ALS (2013) Antidepressant-like action of the bark ethanolic extract from Tabebuia avellanedae in the olfactory bulbectomized mice. J Ethnopharmacol 145:737–745.  https://doi.org/10.1016/j.jep.2012.11.040 CrossRefPubMedGoogle Scholar
  24. Gentry AH (1969) Tabebuia: the tortuous history of a generic name (Bignon.). Taxon 18(6):635–642.  https://doi.org/10.2307/1218919 CrossRefGoogle Scholar
  25. Gentry AH (1992) A synopsis of Bignoniaceae ethnobotany and economic botany. Ann Mo Bot Gard 79:53–64.  https://doi.org/10.2307/2399809 CrossRefGoogle Scholar
  26. Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1–8.  https://doi.org/10.3389/fmicb.2016.01538 CrossRefGoogle Scholar
  27. Govindappa M, Channabasava R, Sunil Kumar KR, Pushpalatha KC (2013) Antioxidant activity and phytochemical screening of crude endophytes extracts of Tabebuia argentea Bur. & K. Sch. Am J Plant Sci 4:1641–1652.  https://doi.org/10.4236/ajps.2013.48198 CrossRefGoogle Scholar
  28. Grose SO, Olmstead RG (2007a) Evolution of a charismatic neotropical clade: molecular phylogeny of Tabebuia s.l., Crescentieae and allied genera (Bignoniaceae). Syst Bot 32(3):650–659.  https://doi.org/10.1600/036364407782250553 CrossRefGoogle Scholar
  29. Grose SO, Olmstead RG (2007b) Evolution of a charismatic neotropical clade: taxonomic revisions in the polyphyletic genus Tabebuia s.l. (Bignoniaceae). Syst Bot 32(3):660–670.  https://doi.org/10.1600/036364407782250652 CrossRefGoogle Scholar
  30. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320.  https://doi.org/10.1128/MMBR.00050-14 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hu X, Li W, Yuan M, Li C, Liu S, Jiang C, Wu Y, Cai K, Liu Y (2016) Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li. World J Microbiol Biotechnol 32(7):1–9.  https://doi.org/10.1007/s11274-016-2073-9 CrossRefPubMedGoogle Scholar
  32. Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:1–14.  https://doi.org/10.3389/fmicb.2016.00906 CrossRefGoogle Scholar
  33. Kaul S, Ahmed M, Zargar K, Sharma P, Dhar MK (2013) Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh. (foxglove) as a novel source of digoxin: a cardiac glycoside. 3 Biotech 3(4):335–340.  https://doi.org/10.1007/s13205-012-0106-0 CrossRefPubMedGoogle Scholar
  34. Koyama J, Morita I, Tagahara K, Iria KJ (2000) Cyclopentene dialdehydes from Tabebuia impetiginosus. Phytochemistry 53:869–872.  https://doi.org/10.1016/S0031-9422(00)00028-5 CrossRefPubMedGoogle Scholar
  35. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum iisolated from Catharanthus roseus. PLoS One 8:e71805.  https://doi.org/10.1371/journal.pone.0071805 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798.  https://doi.org/10.1016/j.chembiol.2012.06.004 CrossRefPubMedGoogle Scholar
  37. Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87.  https://doi.org/10.1016/j.phytochem.2012.07.021 CrossRefPubMedGoogle Scholar
  38. Li X, Zhai X, Shu Z, Dong R, Ming Q, Qin L, Zheng C (2016) Phoma glomerata D14: an endophytic fungus from Salvia miltiorrhiza that produces salvianolic acid C. Curr Microbiol 73(1):31–37.  https://doi.org/10.1007/s00284-016-1023-y CrossRefPubMedGoogle Scholar
  39. Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37(7):1325–1334.  https://doi.org/10.1007/s10529-015-1814-4 CrossRefPubMedGoogle Scholar
  40. Maehara S, Simanjuntak P, Kitamura C, Ohashi K, Shibuya H (2011) Cinchona alkaloids are also produced by an endophytic filamentous fungus living in Cinchona plant. Chem Pharm Bull 59(8):1073–1074.  https://doi.org/10.1248/cpb.59.1073 CrossRefPubMedGoogle Scholar
  41. Maehara S, Simanjuntak P, Maetani Y, Kitamura C, Ohashi K, Shibuya H (2013) Ability of endophytic filamentous fungi associated with Cinchona ledgeriana to produce cinchona alkaloids. J Nat Med 67(2):421–423.  https://doi.org/10.1007/s11418-012-0701-8 CrossRefPubMedGoogle Scholar
  42. Mattos J (1970) Handroanthus, um novo gênero para os “ipês” do Brasil. Loefgrenia 50:1–4Google Scholar
  43. Milke L, Aschenbrenner J, Marienhagen J, Kallscheuer N (2018) Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl Microbiol Biotechnol 102(4):1575–1585.  https://doi.org/10.1007/s00253-018-8747-5 CrossRefPubMedGoogle Scholar
  44. Mir RA, Kaushik PS, Chowdery RA, Anuradha M (2015) Elicitation of forskolin in cultures of Rhizactonia bataticola—a phytochemical synthesizing endophytic fungi. Int J Pharm Pharm Sci 7(10):185–189 ISSN: 0975-1491Google Scholar
  45. Moon DO, Choi YH, Kim ND, Park YM, Kim GY (2007) Anti-inflammatory effects of β-lapachone in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol 7:506–514.  https://doi.org/10.1016/j.intimp.2006.12.006 CrossRefPubMedGoogle Scholar
  46. Mootz HD, Schwarzer D, Marahiel MA (2002) Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3(6):490–504.  https://doi.org/10.1002/1439-7633(20020603)3:6<490::aid-cbic490>3.0.co;2-n CrossRefPubMedGoogle Scholar
  47. Na R, Jiajia L, Dongliang Y, Yingzi P, Juan H, Xiong L, Nana Z, Jing Z, Yitian L (2016) Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae. Microbiol Res 192:114–121.  https://doi.org/10.1016/j.micres.2016.06.008 CrossRefPubMedGoogle Scholar
  48. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439.  https://doi.org/10.1126/science.1126088 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–666.  https://doi.org/10.1021/acs.jnatprod.5b01055 CrossRefPubMedGoogle Scholar
  50. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59.  https://doi.org/10.1016/j.micpath.2015.04.001 CrossRefPubMedGoogle Scholar
  51. Oloyede GK, Oladosu IA, Shodia AF, Oloyade OO (2010) Cytotoxic effects of Tabebuia rosea oils (leaf and stem bark). Arch Appl Sci Res 2(3):127–130 http://www.scholarsresearchlibrary.com/articles/cytotoxic-effects-of-tabebuia-rosea-oils-leaf-and-stem-bark.pdf. ISSN 0975-508XGoogle Scholar
  52. Palem PPC, Kuriakose GC, Jayabaskaran C (2016) Correction: an endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One 11(4):1–6.  https://doi.org/10.1371/journal.pone.0153111 CrossRefGoogle Scholar
  53. Pan BF, Su X, Hu B, Yang N, Chen Q, Wu W (2015) Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine-3β-d-glucoside. Fitoterapia 103:213–221.  https://doi.org/10.1016/j.fitote.2015.04.006 CrossRefPubMedGoogle Scholar
  54. Park BS, Lee KG, Takeoka GR (2004) Comparison of three sample preparation methods on the recovery of volatile from Taheebo (Tabebuia impetiginosa Martius ex DC). Flavour Frag J 19:287–292.  https://doi.org/10.1002/ffj.1345 CrossRefGoogle Scholar
  55. Park BS, Lee HK, Lee SE, Piao XL, Takeoka GR, Wong RY, Ahn YJ, Kim JH (2006) Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori. J Ethnopharmacol 105:255–262.  https://doi.org/10.1016/j.jep.2005.11.005 CrossRefPubMedGoogle Scholar
  56. Pires TCSP, Dias MI, Calhelha RC, Carvalho AM, Queiroz MJRP, Barros L, Ferreira ICFR (2015) Bioactive properties of Tabebuia impetiginosa-based phytopreparations and phytoformulations: a comparison between extracts and dietary supplements. Molecules 20:22863–88871.  https://doi.org/10.3390/molecules201219885 CrossRefPubMedGoogle Scholar
  57. Poling SM, Wicklow DT, Rogers KD, Gloer JB (2008) Acremonium zeae, a protective endophyte of maize, produces dihydroresorcylide and 7-hydroxydihydroresorcylides. J Agric Food Chem 56:3006–3009.  https://doi.org/10.1021/jf073274f CrossRefPubMedGoogle Scholar
  58. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97(21):9365–9375.  https://doi.org/10.1007/s00253-013-5163-8 CrossRefPubMedGoogle Scholar
  59. Queiroz MLS, Valadares MC, Torello CO, Ramos AL, Oliveira AB, Rocha FD, Arruda VA, Accorci WR (2008) Comparative studies of the effects of Tabebuia avellanedae bark extract and β-lapachone on the hematopoietic response of tumour-bearing mice. J Ethnopharmacol 117:228–235.  https://doi.org/10.1016/j.jep.2008.01.034 CrossRefPubMedGoogle Scholar
  60. Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D (2011) Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J 68(1):100–113.  https://doi.org/10.1111/j.1365-313X.2011.04671.x CrossRefPubMedGoogle Scholar
  61. Rao MM, Kingston DG (1982) Plant anticancer agents. XII. Isolation and structure elucidation of new cytotoxic quinones from Tabebuia cassinoides. J Nat Prod 45:600–604.  https://doi.org/10.1021/np50023a014 CrossRefPubMedGoogle Scholar
  62. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330.  https://doi.org/10.1111/j.1469-8137.2009.02773.x CrossRefPubMedGoogle Scholar
  63. Sadananda T, Nirupama R, Chaithra K, Govindappa M, Chandrappa C, Raghavendra VB (2011) Antimicrobial and antioxidant activities of endophytes from Tabebuia argentea and identification of anticancer agent (lapachol). J Med Plant Res 5:3643–3652 ISSN 1996-0875Google Scholar
  64. Sakhuja R, Vashist M, Bhoon YK, Jain SC (2014) Phytochemical investigation of Tabebuia palmeri. Chem Nat Compd 49(6):1039–1042.  https://doi.org/10.1007/s10600-014-0818-y CrossRefGoogle Scholar
  65. Santos VS, Macedo FA, Vale JS, Silva DB, Carollo CA (2017) Metabolomics as a tool for understanding the evolution of Tabebuia sensu lato. Metabolomics 13:1–11.  https://doi.org/10.1007/s11306-017-1209-8 CrossRefGoogle Scholar
  66. Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004.  https://doi.org/10.1017/S0953756202006342 CrossRefGoogle Scholar
  67. Seetharaman P, Gnanasekar S, Chandrasekaran R, Chandrakasan G, Kadarkarai M, Sivaperumal S (2017) Isolation and characterization of anticancer flavone chrysin (5,7-dihydroxy flavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann Microbiol 67(4):321–331.  https://doi.org/10.1007/s13213-017-1263-5 CrossRefGoogle Scholar
  68. Sichaem J, Kaennakam S, Siripong P, Tip-pyang S (2012) Tabebuialdehydes A-C, cyclopentene dialdehyde derivatives from the roots of Tabebuia rosea. Fitoterapia 83:1456–1459.  https://doi.org/10.1016/j.fitote.2012.08.010 CrossRefPubMedGoogle Scholar
  69. Singh R, Dubey AK (2015) Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Glob J Pharm Sci 5(2):106–116 ISSN 2249-1023Google Scholar
  70. Son DJ, Lim Y, Park Y-H, Chang S-K, Yun Y-P, Hong J-T, Takeoka GR, Lee K-G, Lee S-E, Kim M-R, Kim J-H, Park BS (2006) Inhibitory effects of Tabebuia impetiginosa inner bark extract on platelet aggregation and vascular smooth muscle cell proliferation through suppressions of arachidonic acid liberation and ERK1/2 MAPK activation. J Ethnopharmacol 108:148–151.  https://doi.org/10.1016/j.jep.2006.04.016 CrossRefPubMedGoogle Scholar
  71. Souza IM, Bassi GJ, Luiz JHH, Hirata DB (2018) Isolation and screening of extracellular lipase-producing endophytic Fungi from Handroanthus impetiginosus. Asian J Biotechnol Bioresour Technol 4(2):1–10.  https://doi.org/10.9734/AJB2T/2018/43014 CrossRefGoogle Scholar
  72. Steinert J, Rimpler M (1996) High performance liquid chromatographic separation of some naturally occurring naphthoquinones and antthraquinones. J Chromatogr A 723:206–209CrossRefGoogle Scholar
  73. Steinert J, Khalaf H, Rimpler M (1995) HPLC separation and determination of naphtol[2,3-b]furan-4,9-diones and related compounds in extracts of Tabebuia avellanedae (Bignoniaceae). J Chromatogr A 693:281–287CrossRefGoogle Scholar
  74. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5(6):535–544.  https://doi.org/10.1016/S1286-4579(03)00073-X CrossRefPubMedGoogle Scholar
  75. Strobel GA, Stierle A, Hess WM (1993) Taxol formation in yew - Taxus. Plant Sci 92(1):1–12.  https://doi.org/10.1016/0168-9452(93)90060-D CrossRefGoogle Scholar
  76. Suo M, Isao H, Kato H, Takano F, Ohta T (2012) Anti-inflammatory constituents from Tabebuia avellanedae. Fitoterapia 83:1484–1488.  https://doi.org/10.1016/j.fitote.2012.08.014 CrossRefPubMedGoogle Scholar
  77. Takahashi S, Kawakami S, Sugimoto S, Matsunami K, Otsuka H (2015) Lignan glycosides and phenolic compound glycosides from the branches of Tabebuia chrysotricha. Am J Plant Sci 6:676–684.  https://doi.org/10.4236/ajps.2015.65073 CrossRefGoogle Scholar
  78. Teixeira TL, Teixeira SC, Silva CVD, Souza MAD (2014) Potential therapeutic use of herbal extracts in trypanosomiasis. Pathog Glob Health 108(1):30–36.  https://doi.org/10.1179/2047773213Y.0000000120 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Twardowschy A, Freitas CS, Baggio CH, Mayer B, Dos Santos AC, Pizzolatti MG, Zacarias AA, Dos Santos EP, Otuki MF, Marques MCA (2008) Antiulcerogenic activity of bark extract of Tabebuia avellanedae, Lorentz ex Griseb. J Ethnopharmacol 118:455–459.  https://doi.org/10.1016/j.jep.2008.05.013 CrossRefPubMedGoogle Scholar
  80. Venieraki A, Dimou M, Katinakis P (2017) Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hell Plant Protection J 10(2):51–66.  https://doi.org/10.1515/hppj-2017-0006 CrossRefGoogle Scholar
  81. Vennila R, Muthumary J (2011) Taxol from Pestalotiopsis pauciseta VM1, an endophytic fungus of Tabebuia pentaphylla. Biomed Prev Nutr 1:103–108.  https://doi.org/10.1016/j.bionut.2010.12.005 CrossRefGoogle Scholar
  82. Wagner H, Kreher B, Lotter H, Hamburger MO (1989) Structure determination of new isomeric naphto[2,3-b]furan-4,9-diones from Tabebuia avellanedae by the selective-INEPT technique. Helv Chim Acta 72:659–667.  https://doi.org/10.1002/hlca.19890720406 CrossRefGoogle Scholar
  83. Wang XJ, Min XWC, Ge M, Zuo R (2014) An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr Microbiol 68:336–341.  https://doi.org/10.1007/s00284-013-0482-7 CrossRefPubMedGoogle Scholar
  84. Warashima T, Nagatani Y, Noro T (2004) Constituents from the bark of Tabebuia impetiginosa. Phytochemistry 65:2003–2011.  https://doi.org/10.1016/j.phytochem.2004.06.012 CrossRefGoogle Scholar
  85. Warashima T, Nagatani Y, Noro T (2005) Further constituents from the bark of Tabebuia impetiginosa. Phytochemistry 66:589–597.  https://doi.org/10.1016/j.phytochem.2005.01.005 CrossRefGoogle Scholar
  86. Warashima T, Nagatani Y, Noro T (2006) Constituents from the bark of Tabebuia impetiginosa. Chem Pharm Bull 54:14–20.  https://doi.org/10.1248/cpb.54.14 CrossRefGoogle Scholar
  87. Xu J, Wagoner G, Douglas JC, Drew PD (2013) β-Lapachone ameliorization of experimental autoimmune encephalomyelitis. J Neuroimmunol 254:46–54.  https://doi.org/10.1016/j.jneuroim.2012.09.004 CrossRefPubMedGoogle Scholar
  88. You X, Feng S, Luo S, Cong D, Yu Z, Yang Z, Zhang J (2013) Studies on a rhein-producing endophytic fungus isolated from Rheum palmatum L. Fitoterapia 85(1):161–168.  https://doi.org/10.1016/j.fitote.2012.12.010 CrossRefPubMedGoogle Scholar
  89. Zhang Q, Wei X, Wang J (2012) Phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia 83(8):1500–1505.  https://doi.org/10.1016/j.fitote.2012.08.017 CrossRefPubMedGoogle Scholar
  90. Zhang L, Tatsuno T, Hasegawa I, Tadano T, Ohta T (2015) Furanonaphthoquinones from Tabebuia avellanedae induce cell cycle arrest and apoptosis in the human non-small cell lung cancer cell line A549. Phytochem Lett 11:9–17.  https://doi.org/10.1016/j.phytol.2014.09.013 CrossRefGoogle Scholar
  91. Zhang L, Hasegawa I, Ohta T (2017) Iridoid esters from Tabebuia avellanedae and their in vitro anti-inflammatory activities. Planta Med 83:164–171.  https://doi.org/10.1055/s-0042-110322 CrossRefPubMedGoogle Scholar
  92. Zhao J, Fu Y, Luo M, Zu Y, Wang W, Zhao C, Gu C (2012) Endophytic fungi from pigeon pea [Cajanus cajan (L.) Millsp.] produce antioxidant cajaninstilbene acid. J Agric Food Chem 60(17):4314–4319.  https://doi.org/10.1021/jf205097y CrossRefPubMedGoogle Scholar
  93. Zhao J, Li C, Wang W, Zhao C, Luo M, Mu F, Fu Y, Zu Y, Yao M (2013) Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] Millsp.). J Appl Microbiol 115(1):102–113.  https://doi.org/10.1111/jam.12195 CrossRefPubMedGoogle Scholar
  94. Zhou X, Zhu H, Liu L, Lin J, Tang K (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86(6):1707–1717.  https://doi.org/10.1007/s00253-010-2546-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ChemistryFederal University of AlfenasAlfenasBrazil

Personalised recommendations