Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 21, pp 9171–9181 | Cite as

Azoreductase from alkaliphilic Bacillus sp. AO1 catalyzes indigo reduction

  • Hirokazu Suzuki
  • Tomoaki Abe
  • Katsumi Doi
  • Toshihisa Ohshima
Biotechnologically Relevant Enzymes and Proteins

Abstract

Indigo is an insoluble blue dye historically used for dyeing textiles. A traditional approach for indigo dyeing involves microbial reduction of polygonum indigo to solubilize it under alkaline conditions; however, the mechanism by which microorganisms reduce indigo remains poorly understood. Here, we aimed to identify an enzyme that catalyzes indigo reduction; for this purpose, from alkaline liquor that performed microbial reduction of polygonum indigo, we isolated indigo carmine-reducing microorganisms. All isolates were facultative anaerobic and alkali-tolerant Bacillus spp. An isolate termed AO1 was found to be an alkaliphile that preferentially grows at pH 9.0–11.0 and at 30–35 °C. We focused on flavin-dependent azoreductase as a possible enzyme for indigo carmine reduction and identified its gene (azoA) in Bacillus sp. AO1 using homology-based strategies. azoA was monocistronic but clustered with ABC transporter genes. Primary sequence identities were < 50% between the azoA product (AzoA) and previously characterized flavin-dependent azoreductases. AzoA was heterologously produced as a flavoprotein tolerant to alkaline and organic solvents. The enzyme efficiently reduced indigo carmine in an NADH-dependent manner and showed strict specificity for electron acceptors. Notably, AzoA oxidized NADH in the presence, but not the absence, of indigo. The reaction rate was enhanced by adding organic solvents to solubilize indigo. Absorption spectrum analysis showed that indigo absorption decreased during the reaction. These observations suggest that AzoA can reduce indigo in vitro and potentially in Bacillus sp. AO1. This is the first study that identified an indigo reductase, providing a new insight into a traditional approach for indigo dyeing.

Keywords

Alkaliphile Azoreductase Bacillus Indigo Indigo carmine Polygonum 

Notes

Acknowledgments

The authors thank Aika Tanaka Kasuri Koubou (Fukuoka, Japan) for providing the polygonum alkaline liquor.

Funding information

This work was supported by an Innovative Research Program Award of the Japan Society for Bioscience, Biotechnology, and Agrochemistry and the Institute for Fermentation, Osaka, Japan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Aino K, Narihiro T, Minamida K, Kamagata Y, Yoshimune K, Yumoto I (2010) Bacterial community characterization and dynamics of indigo fermentation. FEMS Microbiol Ecol 74:174–183.  https://doi.org/10.1111/j.1574-6941.2010.00946.x CrossRefPubMedGoogle Scholar
  2. Balfour–Paul J (2012) Indigo: Egyptian mummies to blue jeans. Firefly Books Ltd., New YorkGoogle Scholar
  3. Bin Y, Jiti Z, Jing W, Cuihong D, Hongman H, Zhiyong S, Yongming B (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236:129–136.  https://doi.org/10.1111/j.1574-6968.2004.tb09638.x CrossRefPubMedGoogle Scholar
  4. Binter A, Staunig N, Jelesarov I, Lohner K, Palfey BA, Deller S, Gruber K, Macheroux P (2009) A single intersubunit salt bridge affects oligomerization and catalytic activity in a bacterial quinone reductase. FEBS J 276:5263–5274.  https://doi.org/10.1111/j.1742-4658.2009.07222.x CrossRefPubMedGoogle Scholar
  5. Blümel S, Knackmuss H-J, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68:3948–3955.  https://doi.org/10.1128/AEM.68.8.3948-3955.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I (2013) BLAST: a more efficient report with usability improvements. Nucleic Acids Res 41:W29–W33.  https://doi.org/10.1093/nar/gkt282 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Božič M, Kokol V (2008) Ecological alternatives to the reduction and oxidation processes in dyeing with vat and sulphur dyes. Dyes Pigments 76:299–309.  https://doi.org/10.1016/j.dyepig.2006.05.041 CrossRefGoogle Scholar
  8. Božič M, Kokol V, Guebitz GM (2009) Indigo dyeing of polyamide using enzymes for dye reduction. Text Res J 79:895–907.  https://doi.org/10.1177/0040517508097514 CrossRefGoogle Scholar
  9. Božič M, Pricelius S, Guebitz GM, Kokol V (2010) Enzymatic reduction of complex redox dyes using NADH-dependent reductase from Bacillus subtilis coupled with cofactor regeneration. Appl Microbiol Biotechnol 85:563–571.  https://doi.org/10.1007/s00253-009-2164-8 CrossRefPubMedGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.  https://doi.org/10.1006/abio.1976.9999 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Britton HTS, Robinson RA (1931) Universal buffer solutions and the association constant of veronal. J Chem Soc 198:1456–1462CrossRefGoogle Scholar
  12. Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441.  https://doi.org/10.1099/mic.0.27805-0 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen H, Wang R, Cerniglia CE (2004) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr Purif 34:302–310.  https://doi.org/10.1016/j.pep.2003.12.016 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Deller S, Sollner S, Trenker–El–Toukhy R, Jelesarov I, Gübitz GM, Macheroux P (2006) Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry 45:7083–7091.  https://doi.org/10.1021/bi052478r CrossRefPubMedGoogle Scholar
  15. Feng JH, Kweon O, Xu H, Cerniglia CE, Chen H (2012) Probing the NADH- and methyl red-binding site of a FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys 520:99–107.  https://doi.org/10.1016/j.abb.2012.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hirota K, Aino K, Nodasaka Y, Morita N, Yumoto I (2013a) Amphibacillus indicireducens sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:464–469.  https://doi.org/10.1099/ijs.0.037622-0 CrossRefPubMedGoogle Scholar
  17. Hirota K, Aino K, Nodasaka Y, Yumoto I (2013b) Oceanobacillus indicireducens sp. nov., a facultative alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:1437–1442.  https://doi.org/10.1099/ijs.0.034579-0 CrossRefPubMedGoogle Scholar
  18. Hirota K, Aino K, Yumoto I (2013c) Amphibacillus iburiensis sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:4303–4308.  https://doi.org/10.1099/ijs.0.048009-0 CrossRefPubMedGoogle Scholar
  19. Hirota K, Aino K, Yumoto I (2016a) Fermentibacillus polygoni gen. nov., sp. nov., an alkaliphile that reduces indigo dye. Int J Syst Evol Microbiol 66:2247–2253.  https://doi.org/10.1099/ijsem.0.001015 CrossRefPubMedGoogle Scholar
  20. Hirota K, Hanaoka Y, Nodasaka Y, Yumoto I (2013d) Oceanobacillus polygoni sp. nov., a facultatively alkaliphile isolated from indigo fermentation fluid. Int J Syst Evol Microbiol 63:3307–3312.  https://doi.org/10.1099/ijs.0.048595-0 CrossRefPubMedGoogle Scholar
  21. Hirota K, Hanaoka Y, Nodasaka Y, Yumoto I (2014) Gracilibacillus alcaliphilus sp. nov., a facultative alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 64:3174–3180.  https://doi.org/10.1099/ijs.0.060871-0 CrossRefPubMedGoogle Scholar
  22. Hirota K, Nishita M, Matsuyama H, Yumoto I (2017) Paralkalibacillus indicireducens gen., nov., sp. nov., an indigo-reducing obligate alkaliphile isolated from indigo fermentation liquor used for dyeing. Int J Syst Evol Microbiol 67:4050–4056.  https://doi.org/10.1099/ijsem.0.002248 CrossRefPubMedGoogle Scholar
  23. Hirota K, Nishita M, Tu Z, Matsuyama H, Yumoto I (2018) Bacillus fermenti sp. nov., an indigo-reducing obligate alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 68:1123–1129.  https://doi.org/10.1099/ijsem.0.002636 CrossRefPubMedGoogle Scholar
  24. Hirota K, Okamoto T, Matsuyama H, Yumoto I (2016b) Polygonibacillus indicireducens gen. nov., sp. nov., an indigo-reducing and obligate alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 66:4650–4656.  https://doi.org/10.1099/ijsem.0.001405 CrossRefPubMedGoogle Scholar
  25. Johansson HE, Johansson MK, Wong AC, Armstrong ES, Peterson EJ, Grant RE, Roy MA, Reddington MV, Cook RM (2011) BTI1, an azoreductase with pH-dependent substrate specificity. Appl Environ Microbiol 77:4223–4225.  https://doi.org/10.1128/AEM.02289-10 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Krishna PS, Sreenivas A, Singh DK, Shivaji S, Prakash JSS (2015) Draft genome sequence of Bacillus okhensis Kh10-101T, a halo-alkali tolerant bacterium from Indian saltpan. Genom Data 6:283–284.  https://doi.org/10.1016/j.gdata.2015.10.019 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lang W, Sirisansaneeyakul S, Ngiwsara L, Mendes S, Martins LO, Okuyama M, Kimura A (2013) Characterization of a new oxygen-insensitive azoreductase from Brevibacillus laterosporus TISTR1911: toward dye decolorization using a packed-bed metal affinity reactor. Bioresour Technol 150:298–306.  https://doi.org/10.1016/j.biortech.2013.09.124 CrossRefPubMedGoogle Scholar
  28. Matsumoto K, Mukai Y, Ogata D, Shozui F, Nduko JM, Taguchi S, Ooi T (2010) Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus. Appl Microbiol Biotechnol 86:1431–1438.  https://doi.org/10.1007/s00253-009-2351-7 CrossRefPubMedGoogle Scholar
  29. Mendes S, Pereira L, Batista C, Martins LO (2011) Molecular determinants of azo reduction activity in the strain Pseudomonas putida MET94. Appl Microbiol Biotechnol 92:393–405.  https://doi.org/10.1007/s00253-011-3366-4 CrossRefPubMedGoogle Scholar
  30. Misal SA, Lingojwar DP, Gawai KR (2013) Properties of NAD(P)H azoreductase from alkaliphilic red bacteria Aquiflexum sp. DL6. Protein J 32:601–608.  https://doi.org/10.1007/s10930-013-9522-1 CrossRefPubMedGoogle Scholar
  31. Nakajima K, Hirota K, Nodasaka Y, Yumoto I (2005) Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 55:1525–1530.  https://doi.org/10.1099/ijs.0.63487-0 CrossRefPubMedGoogle Scholar
  32. Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399.  https://doi.org/10.1074/jbc.M104483200 CrossRefPubMedGoogle Scholar
  33. Nicholson SK, John P (2005) The mechanism of bacterial indigo reduction. Appl Microbiol Biotechnol 68:117–123.  https://doi.org/10.1007/s00253-004-1839-4 CrossRefPubMedGoogle Scholar
  34. Nogi Y, Takami H, Horikoshi K (2005) Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55:2309–2315.  https://doi.org/10.1099/ijs.0.63649-0 CrossRefPubMedGoogle Scholar
  35. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain-reaction. Genetics 120:621–623PubMedPubMedCentralGoogle Scholar
  36. Ooi T, Shibata T, Sato R, Ohno H, Kinoshita S, Thuoc TL, Taguchi S (2007) An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp. Appl Microbiol Biotechnol 75:377–386.  https://doi.org/10.1007/s00253-006-0836-1 CrossRefPubMedGoogle Scholar
  37. Padden AN, Dillon VM, Edmonds J, Collins MD, Alvarez N, John P (1999) An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. Int J Syst Bacteriol 49:1025–1031.  https://doi.org/10.1099/00207713-49-3-1025 CrossRefPubMedGoogle Scholar
  38. Padden AN, Dillon VM, John P, Edmonds J, Collins MD, Alvarez N (1998) Clostridium used in mediaeval dyeing. Nature 396:225–225.  https://doi.org/10.1038/24290 CrossRefGoogle Scholar
  39. Pricelius S, Held C, Murkovic M, Bozic M, Kokol V, Cavaco–Paulo A, Guebitz GM (2007) Enzymatic reduction of azo and indigoid compounds. Appl Microbiol Biotechnol 77:321–327.  https://doi.org/10.1007/s00253-007-1165-8 CrossRefPubMedGoogle Scholar
  40. Segel IH (1975) Enzyme kinetics. John Wiley & Sons, New YorkGoogle Scholar
  41. Sugiura W, Yoda T, Matsuba T, Tanaka Y, Suzuki Y (2006) Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus. Biosci Biotechnol Biochem 70:1655–1665.  https://doi.org/10.1271/bbb.60014 CrossRefPubMedGoogle Scholar
  42. Yang Y, Lu L, Gao F, Zhao Y (2013) Characterization of an efficient catalytic and organic solvent-tolerant azoreductase toward methyl red from Shewanella oneidensis MR-1. Environ Sci Pollut Res 20:3232–3239.  https://doi.org/10.1007/s11356-012-1221-5 CrossRefGoogle Scholar
  43. Yumoto I, Hirota K, Nodasaka Y, Tokiwa Y, Nakajima K (2008) Alkalibacterium indicireducens sp. nov., an obligate alkaliphile that reduces indigo dye. Int J Syst Evol Microbiol 58:901–905.  https://doi.org/10.1099/ijs.0.64995-0 CrossRefPubMedGoogle Scholar
  44. Yumoto I, Hirota K, Nodasaka Y, Yokota Y, Hoshino T, Nakajima K (2004) Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54:2379–2383.  https://doi.org/10.1099/ijs.0.63130-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Functional Genomics of Extremophiles, Faculty of Agriculture, Graduate SchoolKyushu UniversityFukuokaJapan
  2. 2.Department of Chemistry and Biotechnology, Graduate School of EngineeringTottori UniversityTottoriJapan
  3. 3.Centre for Research on Green Sustainable ChemistryTottori UniversityTottoriJapan
  4. 4.Microbial Genetic Division, Institute of Genetic Resources, Faculty of Agriculture, Graduate SchoolKyushu UniversityFukuokaJapan
  5. 5.Faculty of EngineeringOsaka Institute of TechnologyOsakaJapan

Personalised recommendations