Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8419–8428 | Cite as

Heterologous AdpA transcription factors enhance landomycin production in Streptomyces cyanogenus S136 under a broad range of growth conditions

  • Oleksandr Yushchuk
  • Iryna Ostash
  • Iryna Vlasiuk
  • Tetiana Gren
  • Andriy Luzhetskyy
  • Joern Kalinowski
  • Victor Fedorenko
  • Bohdan Ostash
Applied genetics and molecular biotechnology

Abstract

Streptomyces cyanogenus S136 is the only known producer of landomycin A (LaA), one of the largest glycosylated angucycline antibiotics possessing strong antiproliferative properties. There is rising interest in elucidation of mechanisms of action of landomycins, which, in turn, requires access to large quantities of the pure compounds. Overproduction of LaA has been achieved in the past through manipulation of cluster-situated regulatory genes. However, other components of the LaA biosynthetic regulatory network remain unknown. To fill this gap, we elucidated the contribution of AdpA family pleiotropic regulators in landomycin production via expression of adpA genes of different origins in S. cyanogenus S136. Overexpression of the native S. cyanogenus S136 adpA ortholog had no effect on landomycin titers. In the same time, expression of several heterologous adpA genes led to significantly increased landomycin production under different cultivation conditions. Hence, heterologous adpA genes are a useful tool to enhance or activate landomycin production by S. cyanogenus. Our ongoing research effort is focused on identification of mutations that render S. cyanogenus AdpA nonfunctional.

Keywords

Streptomyces Landomycin A Regulation AdpA family regulators 

Notes

Acknowledgements

We thank Simon Shaw (Technical University of Denmark, Copenhagen) for careful proofreading of the manuscript.

Funding

This work was supported by grants Bg-46F (to V. F.) and M/26-2018 and Bg-41Nr (to B.O.) from the Ministry of Education and Science of Ukraine.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9249_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1084 kb)

References

  1. Ahmed Y, Rebets Y, Tokovenko B, Brötz E, Luzhetskyy A (2017) Identification of butenolide regulatory system controlling secondary metabolism in Streptomyces albus J1074. Sci Rep 7(1):9784.  https://doi.org/10.1038/s41598-017-10316-y CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208.  https://doi.org/10.1093/nar/gkp335 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Claesen J, Bibb MJ (2011) Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350. J Bacteriol 193(10):2510–2516.  https://doi.org/10.1128/JB.00171-11 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Du YL, Li SZ, Zhou Z, Chen SF, Fan WM, Li YQ (2011) The pleiotropic regulator AdpAch is required for natamycin biosynthesis and morphological differentiation in Streptomyces chattanoogensis. Microbiology 157(Pt 5):1300–1311.  https://doi.org/10.1099/mic.0.046607-0 CrossRefPubMedGoogle Scholar
  5. Henkel T, Rohr J, Beale JM, Schwenen L (1990) Landomycins, new angucycline antibiotics from Streptomyces sp. I. Structural studies on landomycins A-D. J Antibiot 43(5):492–503CrossRefPubMedGoogle Scholar
  6. Higashi T, Iwasaki Y, Ohnishi Y, Horinouchi S (2007) A-factor and phosphate depletion signals are transmitted to the grixazone biosynthesis genes via the pathway-specific transcriptional activator GriR. J Bacteriol 189(9):3515–3524.  https://doi.org/10.1128/JB.00055-07 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Higo A, Hara H, Horinouchi S, Ohnishi Y (2012) Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces, revealed the extent and complexity of the AdpA regulatory network. DNA Res 19(3):259–273.  https://doi.org/10.1093/dnares/dss010 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Horbal L, Fedorenko V, Luzhetskyy A (2014) Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl Microbiol Biotechnol 98(20):8641–8655.  https://doi.org/10.1007/s00253-014-5918-x CrossRefPubMedGoogle Scholar
  9. Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Nybo SE, Shaaban KA, Rohr J (2012) Angucyclines: biosynthesis, mode-of-action, new natural products, and synthesis. Nat Prod Rep 29(2):264–325.  https://doi.org/10.1039/c1np00068c CrossRefPubMedGoogle Scholar
  10. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, NorwichGoogle Scholar
  11. Korynevska A, Heffeter P, Matselyukh B, Elbling L, Micksche M, Stoika R, Berger W (2007) Mechanisms underlying the anticancer activities of the angucycline landomycin E. Biochem Pharmacol 74(12):1713–1726.  https://doi.org/10.1016/j.bcp.2007.08.026 CrossRefPubMedGoogle Scholar
  12. Kuzniar A, van Ham RC, Pongor S, Leunissen JA (2008) The quest for orthologs: finding the corresponding gene across genomes. Trends Genet 24(11):539–551.  https://doi.org/10.1016/j.tig.2008.08.009 CrossRefPubMedGoogle Scholar
  13. Lehka LV, Panchuk RR, Berger W, Rohr J, Stoika RS (2015) The role of reactive oxygen species in tumor cells apoptosis induced by landomycin A. Ukr Biochem J 87(5):72–82CrossRefPubMedGoogle Scholar
  14. Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77(1):112–143.  https://doi.org/10.1128/MMBR.00054-12 CrossRefPubMedPubMedCentralGoogle Scholar
  15. López-García MT, Santamarta I, Liras P (2010) Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant. Microbiology 156(8):2354–2365.  https://doi.org/10.1099/mic.0.035956-0 CrossRefPubMedGoogle Scholar
  16. Makitrynskyy R, Ostash B, Tsypik O, Rebets Y, Doud E, Meredith T, Luzhetskyy A, Bechthold A, Walker S, Fedorenko V (2013) Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol 3(10):130121.  https://doi.org/10.1098/rsob.130121 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Martín JF, Liras P (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13(3):263–273.  https://doi.org/10.1016/j.mib.2010.02.008 CrossRefPubMedGoogle Scholar
  18. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11(1):31–46.  https://doi.org/10.1038/nrg2626 CrossRefPubMedGoogle Scholar
  19. Myronovskyi M, Brötz E, Rosenkränzer B, Manderscheid N, Tokovenko B, Rebets Y, Luzhetskyy A (2016) Generation of new compounds through unbalanced transcription of landomycin A cluster. Appl Microbiol Biotechnol 100(21):9175–9186.  https://doi.org/10.1007/s00253-016-7721-3 CrossRefPubMedGoogle Scholar
  20. Ohnishi Y, Yamazaki H, Kato JY, Tomono A, Horinouchi S (2005) AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 69(3):431–439.  https://doi.org/10.1271/bbb.69.431 CrossRefPubMedGoogle Scholar
  21. Ostash B, Rix U, Rix LL, Liu T, Lombo F, Luzhetskyy A, Gromyko O, Wang C, Braña AF, Méndez C, Salas JA, Fedorenko V, Rohr J (2004) Generation of new landomycins by combinatorial biosynthetic manipulation of the LndGT4 gene of the landomycin E cluster in S. globisporus. Chem Biol 11(4):547–555.  https://doi.org/10.1016/j.chembiol.2004.03.011 CrossRefPubMedGoogle Scholar
  22. Ostash I, Ostash B, Luzhetskyy A, Bechthold A, Walker S, Fedorenko V (2008) Coordination of export and glycosylation of landomycins in Streptomyces cyanogenus S136. FEMS Microbiol Lett 285(2):195–202.  https://doi.org/10.1111/j.1574-6968.2008.01225.x CrossRefPubMedGoogle Scholar
  23. Ostash B, Korynevska A, Stoika R, Fedorenko V (2009) Chemistry and biology of landomycins, an expanding family of polyketide natural products. Mini Rev Med Chem 9(9):1040–1051CrossRefPubMedGoogle Scholar
  24. Pan Y, Liu G, Yang H, Tian Y, Tan H (2009) The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol Microbiol 72(3):710–723.  https://doi.org/10.1111/j.1365-2958.2009.06681.x CrossRefPubMedGoogle Scholar
  25. Panchuk RR, Lehka LV, Terenzi A, Matselyukh BP, Rohr J, Jha AK, Downey T, Kril IJ, Herbacek I, van Schoonhoven S, Heffeter P, Stoika RS, Berger W (2017) Rapid generation of hydrogen peroxide contributes to the complex cell death induction by the angucycline antibiotic landomycin E. Free Radic Biol Med 106:134–147.  https://doi.org/10.1016/j.freeradbiomed.2017.02.024 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Rabyk M, Yushchuk O, Rokytskyy I, Anisimova M, Ostash B (2018) Genomic insights into evolution of AdpA family master regulators of morphological differentiation and secondary metabolism in Streptomyces. J Mol Evol 86:204–215.  https://doi.org/10.1007/s00239-018-9834-z CrossRefPubMedGoogle Scholar
  27. Rebets Y, Ostash B, Luzhetskyy A, Hoffmeister D, Brana A, Mendez C, Salas JA, Bechthold A, Fedorenko V (2003) Production of landomycins in Streptomyces globisporus 1912 and S. cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol Lett 222(1):149–153CrossRefPubMedGoogle Scholar
  28. Rebets Y, Dutko L, Ostash B, Luzhetskyy A, Kulachkovskyy O, Yamaguchi T, Nakamura T, Bechthold A, Fedorenko V (2008) Function of lanI in regulation of landomycin A biosynthesis in Streptomyces cyanogenus S136 and cross-complementation studies with Streptomyces antibiotic regulatory proteins encoding genes. Arch Microbiol 189(2):111–120.  https://doi.org/10.1007/s00203-007-0299-5 CrossRefPubMedGoogle Scholar
  29. Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New-YorkGoogle Scholar
  30. Takano E, Tao M, Long F, Bibb MJ, Wang L, Li W, Buttner MJ, Bibb MJ, Deng ZX, Chater KF (2003) A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol 50(2):475–486CrossRefPubMedGoogle Scholar
  31. Wang J, Schully KL, Pettis GS (2009) Growth-regulated expression of a bacteriocin, produced by the sweet potato pathogen Streptomyces ipomoeae, that exhibits interstrain inhibition. Appl Environ Microbiol 75(5):1236–1242.  https://doi.org/10.1128/AEM.01598-08 CrossRefPubMedGoogle Scholar
  32. Xu J, Zhang J, Zhuo J, Li Y, Tian Y, Tan H (2017) Activation and molecular mechanism of a cryptic oviedomycin biosynthetic gene cluster via the disruption of a global regulatory gene adpA in Streptomyces ansochromogenes. J Biol Chem 292(48):19708–19720.  https://doi.org/10.1074/jbc.M117.809145 CrossRefPubMedGoogle Scholar
  33. Yu P, Bu QT, Tang YL, Mao XM, Li YQ (2018) Bidirectional regulation of AdpA(ch) in controlling the expression of scnRI and scnRII in the natamycin biosynthesis of Streptomyces chattanoogensis L10. Front Microbiol 157:1300–1311.  https://doi.org/10.3389/fmicb.2018.00316 CrossRefGoogle Scholar
  34. Yao MD, Ohtsuka J, Nagata K, Miyazono KI, Zhi Y, Ohnishi Y, Tanokura M (2013) Complex structure of the DNA-binding domain of AdpA, the global transcription factor in Streptomyces griseus, and a target duplex DNA reveals the structural basis of its tolerant DNA sequence specificity. J Biol Chem 288:31019–31029.  https://doi.org/10.1074/jbc.M113.473611 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetics and BiotechnologyIvan Franko National University of LvivLvivUkraine
  2. 2.Technology Platform Genomics, CeBiTecBielefeld UniversityBielefeldGermany
  3. 3.Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland, Actinobacteria Metabolic Engineering GroupSaarland UniversitySaarbruckenGermany

Personalised recommendations