Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8329–8339 | Cite as

Improved ZnS nanoparticle properties through sequential NanoFermentation

  • Ji-Won Moon
  • Jeremy R. Eskelsen
  • Ilia N. Ivanov
  • Christopher B. Jacobs
  • Gyoung Gug Jang
  • Michelle K. Kidder
  • Pooran C. Joshi
  • Beth L. Armstrong
  • Eric M. Pierce
  • Ronald S. Oremland
  • Tommy J. Phelps
  • David E. Graham
Biotechnological products and process engineering
  • 209 Downloads

Abstract

Sequential NanoFermentation (SNF) is a novel process which entails sparging microbially produced gas containing H2S from a primary reactor through a concentrated metal-acetate solution contained in a secondary reactor, thereby precipitating metallic sulfide nanoparticles (e.g., ZnS, CuS, or SnS). SNF holds an advantage over single reactor nanoparticle synthesis strategies, because it avoids exposing the microorganisms to high concentrations of toxic metal and sulfide ions. Also, by segregating the nanoparticle products from biological materials, SNF avoids coating nanoparticles with bioproducts that alter their desired properties. Herein, we report the properties of ZnS nanoparticles formed from SNF as compared with ones produced directly in a primary reactor (i.e., conventional NanoFermentation, or “CNF”), commercially available ZnS, and ZnS chemically synthesized by bubbling H2S gas through a Zn-acetate solution. The ZnS nanoparticles produced by SNF provided improved optical properties due to their smaller crystallite size, smaller overall particle sizes, reduced biotic surface coatings, and reduced structural defects. SNF still maintained the advantages of NanoFermentation technology over chemical synthesis including scalability, reproducibility, and lower hazardous waste burden.

Keywords

Sparging H2S-bearing gas Metal sulfide formation Average crystallite size Particle size Optical property 

Notes

Acknowledgements

The authors gratefully acknowledge support from the US Department of Energy (DOE), Office of Energy Efficiency & Renewable Energy’s Advanced Manufacturing Office, Low Temperature Material Synthesis Program (CPS 24762) of the Manufacturing Demonstration Facility. Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored by the ORNL Scientific User Facilities Division and DOE Office of Basic Research Sciences. EM characterization (JRE and EMP) was supported by the Office of Biological and Environmental Research (BER), Office of Science, DOE as part of the Mercury Science Focus Area at ORNL. The authors thank Deanne Brice for C&N analysis. FTIR work by M K was supported by the US DOE, Office of Science, Basic Energy Sciences under Award ERKCC96. ORNL is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725.

Disclaimers

Mention of brand name products does not constitute an endorsement by the U.S. Geological Survey. The data in this manuscript represent the entirety of the experimental work conducted.

Compliance with ethical standards

Conflict of interest

Portions of this work may be subject to United States Application No. 62/359,356 filed on July 7, 2016 and WO2018009739A1 published on January 11, 2018 issued to inventors including coauthors JWM, TJP, RSO, DEG, INI, CBJ, GGJ, MKK, PCJ, and BLA. This article does not contain any studies with human participants or animals.

References

  1. Akiba I (2002) Method for the production of anhydrous alkali metal sulfide and alkali metal sulfide solution. USA Patent 6,337,062Google Scholar
  2. Eskelsen JR, Xu J, Chiu M, Moon J-W, Wilkins B, Graham DE, Gu B, Pierce EM (2018) Influence of structural defects on biomineralized ZnS nanoparticle dissolution: an in-situ electron microscopy study. Environ Sci Technol 52(3):1139–1149CrossRefPubMedGoogle Scholar
  3. Jang GG, Gresback RG, Ivanov IN, Meyer HM III, Kidder M, Phelps TJ, Graham DE, Moon J-W (2015a) Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules. J Mater Chem C 3:644–650CrossRefGoogle Scholar
  4. Jang GG, Jacobs CB, Ivanov IN, Joshi PC, Meyer HM III, Kidder M, Armstrong BL, Datskos PG, Graham DE, Moon J-W (2015b) In situ capping for size control of monochalcogenide (ZnS, CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria. Nanotechnol 26:325602CrossRefGoogle Scholar
  5. Kumar P, Saxena N, Singh F, Agarwal A (2012) Nanotwinning in CdS quantum dots. Physica B 407(17):3347–3351CrossRefGoogle Scholar
  6. Lindroos S, Kanniainen TML (1997) Growth of zinc sulfide thin films by the successive ionic layer adsorption and reaction (Silar) method on polyester substrates. Mater Res Bull 32(12):1631–1636CrossRefGoogle Scholar
  7. Madden AS, Swindle AL, Beazley MJ, Moon J-W, Ravel B, Phelps TJ (2012) Long-term solid-phase fate of co-precipitated U(VI)-Fe(III) following biological iron reduction by Thermoanaerobacter. Am Mineral 97(10):1641–1652CrossRefGoogle Scholar
  8. Moon J-W, Roh Y, Lauf RJ, Vali H, Yeary LW, Phelps TJ (2007a) Microbial preparation of metal-substituted magnetite nanoparticles. J Microbiol Methods 70(1):150–158CrossRefPubMedGoogle Scholar
  9. Moon J-W, Roh Y, Yeary LW, Lauf RJ, Rawn CJ, Love LJ, Phelps TJ (2007b) Microbial formation of lanthanide-substituted magnetites by Thermoanaerobacter sp. TOR-39. Extremophiles 11(6):859–867CrossRefPubMedGoogle Scholar
  10. Moon J-W, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Lauf RJ, Phelps TJ (2010a) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37(10):1023–1031CrossRefPubMedGoogle Scholar
  11. Moon J-W, Rawn CJ, Rondinone AJ, Wang W, Vali H, Yeary LW, Love LJ, Kirkham MJ, Gu B, Phelps TJ (2010b) Crystallite sizes and lattice parameters of nano-biomagnetite particles. J Nanosci Nanotechnol 10(12):8298–8306CrossRefPubMedGoogle Scholar
  12. Moon J-W, Ivanov IN, Duty CE, Love LJ, Rondinone AJ, Wang W, Li Y-L, Madden AS, Mosher JJ, Hu MZ, Suresh AK, Rawn CJ, Jung H, Lauf RJ, Phelps TJ (2013) Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile. J Ind Microbiol Biotechnol 40(11):1263–1271CrossRefPubMedGoogle Scholar
  13. Moon J-W, Ivanov IN, Joshi PC, Armstrong BL, Wang W, Jung H, Rondinone AJ, Jellison G Jr, Meyer HM III, Jang GG, Meisner RA, Duty CE, Phelps TJ (2014) Scalable production of microbially-mediated ZnS nanoparticles and application to functional thin films. Acta Biomater 10(10):4474–4483CrossRefPubMedGoogle Scholar
  14. Moon J-W, Phelps TJ, Fitzgerald CL Jr, Lind RF, Elkins JG, Jang GG, Joshi PC, Kidder M, Armstrong BL, Watkins TR, Ivanov IN, Graham DE (2016) Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors. Appl Microbiol Biotechnol 100(18):7921–7931CrossRefPubMedGoogle Scholar
  15. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715CrossRefGoogle Scholar
  16. Nanda J, Sapra S, Sarma DD, Chandrasekharan N, Hodes G (2000) Size-selected zinc sulfide nanocrystallites: synthesis, structure, and optical studies. Chem Mater 12(4):1018–1024CrossRefGoogle Scholar
  17. Rodenbough PP, Song J, Walker D, Clark SM, Kalkan B, Chan SW (2015) Size dependent compressibility of nano-ceria: minimum near 33 nm. Appl Phys Lett 106(16):163101CrossRefGoogle Scholar
  18. Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 118(10):529–534CrossRefGoogle Scholar
  19. Saunders JA (1998) Situ bioremediation of contaminated groundwater USA Patent US 5,833,855Google Scholar
  20. Sim YJ, Hawang C-S (2016) Syntheses of the water-dispersible glycolic acid capped ZnS:Mn nanocrystals at different pH conditions, and their aggregation and luminescence quenching effects in aqueous solution. J Nanosci Nanotechnol 16(6):6281–6288CrossRefPubMedGoogle Scholar
  21. Umino H, Yamada N, Katagiri T, Shibuya H, Oguro S, Iwasaki N (2013) Reactor for synthesizing hydrogen sulfide apparatus for producing hydrogen sulfide, apparatus for producing sodium hydrogen sulfide, method for producing hydrogen sulfide, and method for producing sodium hydrogen sulfide. USA Patent US 8,551,442Google Scholar
  22. Zhang H, Banfield JF (2009) Identification and growth mechanism of ZnS nanoparticles with mixed cubic and hexagonal stacking. J Phys Chem C 113(22):9681–9687CrossRefGoogle Scholar
  23. Zhang H, Chen B, Gilbert B, Banfield JF (2006) Kinetically controlled formation of a novel nanoparticulate ZnS with mixed cubic and hexagonal stacking. J Mater Chem 16(3):249–254CrossRefGoogle Scholar
  24. Zhang Y, Zhu F, Zhang J, Xia L (2008) Converting layered zinc acetate nanobelts to one-dimensional structured ZnO nanoparticle aggregates and their photocatalytic activity. Nanoscale Res Lett 3(6):201–204CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ji-Won Moon
    • 1
    • 2
  • Jeremy R. Eskelsen
    • 3
  • Ilia N. Ivanov
    • 4
  • Christopher B. Jacobs
    • 4
  • Gyoung Gug Jang
    • 5
  • Michelle K. Kidder
    • 6
  • Pooran C. Joshi
    • 7
  • Beth L. Armstrong
    • 7
  • Eric M. Pierce
    • 3
  • Ronald S. Oremland
    • 8
  • Tommy J. Phelps
    • 1
  • David E. Graham
    • 1
  1. 1.Biosciences DivisionOak Ridge National Laboratory (ORNL)Oak RidgeUSA
  2. 2.National Minerals Information CenterUnited States Geological SurveyRestonUSA
  3. 3.Environmental Sciences DivisionORNLOak RidgeUSA
  4. 4.Center for Nanophase Materials SciencesORNLOak RidgeUSA
  5. 5.Energy & Transportation Science DivisionORNLOak RidgeUSA
  6. 6.Chemical Sciences DivisionORNLOak RidgeUSA
  7. 7.Material Science and Technology DivisionORNLOak RidgeUSA
  8. 8.United States Geological SurveyMenlo ParkUSA

Personalised recommendations