Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8145–8152 | Cite as

Recent progress on biological production of α-arbutin

  • Xingtong Zhu
  • Yuqing Tian
  • Wenli Zhang
  • Tao Zhang
  • Cuie Guang
  • Wanmeng MuEmail author


Arbutin, a glucoside of hydroquinone, is used as a powerful skin lightening agent in the cosmeceutical industry because of its strong inhibitory effect on the human tyrosinase activity. It is a natural compound occurring in a number of plants, with a β-anomeric form of the glycoside bond between glucose and hydroquinone. α-Arbutin, which glycoside bond is generated with α-anomeric form, is the isomer of natural arbutin. α-Arbutin is generally produced by transglucosylation of hydroquinone by microbial glycosyltransferases. It is interesting that α-arbutin is found to be over 10 times more effective than arbutin, and thus biological production of α-arbutin attracts increasing attention. Seven different microbial enzymes have been identified to be able to produce α-arbutin, including α-amylase, sucrose phosphorlase, cyclodextrin glycosyltransferase, α-glucosidase, dextransucrase, amylosucrase, and sucrose isomerase. In this work, enzymatic and microbial production of α-arbutin is reviewed in detail.


Arbutin Glucoside Glycosyltransferase Transglucosylation Tyrosinase inhibitor 



This work was supported by the Support Project of Jiangsu Province (No. 2015-SWYY-009), the Research Program of State Key Laboratory of Food Science and Technology, Jiangnan University (Nos. SKLF-ZZA-201802 and SKLF-ZZB-201814), and the National First-Class Discipline Program of Food Science and Technology (No. JUFSTR20180203).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abascal K, Yarnell E (2008) Botanical medicine for cystitis. Altern Complement Ther 14:69–77CrossRefGoogle Scholar
  2. Bang SH, Han SJ, Kim DH (2008) Hydrolysis of arbutin to hydroquinone by human skin bacteria and its effect on antioxidant activity. J Cosmet Dermatol 7:189–193CrossRefPubMedGoogle Scholar
  3. Chang TS (2009) An updated review of tyrosinase inhibitors. Int J Mol Sci 10:2440–2475CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, Kim MJ, Yoo SH, Cha J, Kim YR, Park CS (2011a) Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzym Microb Technol 49:246–253CrossRefGoogle Scholar
  5. Cho JY, Park KY, Lee KH, Lee HJ, Lee SH, Cho JA, Kim WS, Shin SC, Park KH, Moon JH (2011b) Recovery of arbutin in high purity from fruit peels of pear (Pyrus pyrifolia Nakai). Food Sci Biotechnol 20:801–807CrossRefGoogle Scholar
  6. Gemot S, Ulrich P, Benno B, Alexander N, Jörg W, Nils K, Ingmar G, Markus V (2002) Urinary excretion and metabolism of arbutin after oral administration of Arctostaphylos uvae ursi extract as film-coated tablets and aqueous solution in healthy humans. J Clin Pharmacol 42:920–927CrossRefGoogle Scholar
  7. Gudiminchi RK, Towns A, Varalwar S, Nidetzky B (2016) Enhanced synthesis of 2-O-α-d-glucopyranosyl-l-ascorbic acid from α-cyclodextrin by a highly disproportionating CGTase. ACS Catal 6:1606–1615CrossRefGoogle Scholar
  8. Han RZ, Li JH, Shin HD, Chen RR, Du GC, Liu L, Chen J (2014) Recent advances in discovery, heterologous expression, and molecular engineering of cyclodextrin glycosyltransferase for versatile applications. Biotechnol Adv 32:415–428CrossRefPubMedGoogle Scholar
  9. Hefner T, Arend J, Warzecha H, Siems K, Stockigt J (2002) Arbutin synthase, a novel member of the NRD1β glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and xenobiotics. Bioorg Med Chem 10:1731–1741CrossRefPubMedGoogle Scholar
  10. Inomata S, Yokoyama M, Seto S, Yanagi M (1991) High-level production of arbutin from hydroquinone in suspension cultures of Catharanthus roseus plant cells. Appl Microbiol Biotechnol 36:315–319CrossRefGoogle Scholar
  11. Ioku K, Terao J, Nakatani N (1992) Antioxidative activity of arbutin in a solution and liposomal suspension. Biosci Biotechnol Biochem 56:1658–1659CrossRefGoogle Scholar
  12. Jeong JW, Seo DH, Jung JH, Park JH, Baek NI, Kim MJ, Park CS (2014) Biosynthesis of glucosyl glycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from Methylobacillus flagellatus KT. Appl Biochem Biotechnol 173:904–917CrossRefPubMedGoogle Scholar
  13. Jung JH, Seo DH, Ha SJ, Song MC, Cha J, Yoo SH, Kim TJ, Baek NI, Baik MY, Park CS (2009) Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr Res 344:1612–1619CrossRefPubMedGoogle Scholar
  14. Jurica K, Gobin I, Kremer D, Cepo DV, Grubesic RJ, Karaconji IB, Kosalec I (2017) Arbutin and its metabolite hydroquinone as the main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves. J Herb Med 8:17–23CrossRefGoogle Scholar
  15. Kanteev M, Goldfeder M, Fishman A (2015) Structure–function correlations in tyrosinases. Protein Sci 24:1360–1369CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kazuhisha S, Takahisha N, Takahashi K (2007) Development of α-arbutin: production at industrial scale and application for a skin-lightening cosmetic ingredient. Trends Glycosci Glycotechnol 19:235–246CrossRefGoogle Scholar
  17. Kim YM, Kim BH, Ahn JS, Kim GE, Jin SD, Nguyen TH, Kim D (2009) Enzymatic synthesis of alkyl glucosides using Leuconostoc mesenteroides dextransucrase. Biotechnol Lett 31:1433–1438CrossRefPubMedGoogle Scholar
  18. Kim MD, Jung DH, Seo DH, Jung JH, Seo EJ, Baek NI, Yoo SH, Park CS (2016) Acceptor specificity of amylosucrase from Deinococcus radiopugnans and its application for synthesis of rutin derivative. J Microbiol Biotechnol 26:1845–1854CrossRefPubMedGoogle Scholar
  19. Kitao S, Sekine H (1992) Transglucosylation catalyzed by sucrose phosphorylase from Leuconostoc mesenteroides and production of glucosyl-xylitol. Biosci Biotechnol Biochem 56:2011–2014CrossRefGoogle Scholar
  20. Kitao S, Sekine H (1994) α-D-glucosyl transfer to phenolic-compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of α-arbutin. Biosci Biotechnol Biochem 58:38–42CrossRefPubMedGoogle Scholar
  21. Ko JA, Ryu YB, Park TS, Jeong HJ, Kim JH, Park SJ, Kim JS, Kim D, Kim YM, Lee WS (2012) Enzymatic synthesis of puerarin glucosides using Leuconostoc dextransucrase. J Microbiol Biotechnol 22:1224–1229CrossRefPubMedGoogle Scholar
  22. Ko JA, Nam SH, Park JY, Wee Y, Kim D, Lee WS, Ryu YB, Kim YM (2016) Synthesis and characterization of glucosyl stevioside using Leuconostoc dextransucrase. Food Chem 211:577–582CrossRefPubMedGoogle Scholar
  23. Kothari D, Goyal A (2015) Gentio-oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase as prebiotics and as a supplement for functional foods with anti-cancer properties. Food Funct 6:604–611CrossRefPubMedGoogle Scholar
  24. Kurosu J, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S (2002) Enzymatic synthesis of α-arbutin by α-anomer-selective-glucosylation of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701. J Biosci Bioeng 93:328–330CrossRefPubMedGoogle Scholar
  25. Kwiecien I, Szopa A, Madej K, Ekiert H (2013) Arbutin production via biotransformation of hydroquinone in in vitro cultures of Aronia melanocarpa (Michx.) Elliott. Acta Biochim Pol 60:865–870PubMedGoogle Scholar
  26. Larsson J, Svensson D, Adlercreutz P (2005) α-Amylase-catalysed synthesis of alkyl glycosides. J Mol Catal B Enzym 37(1):84–87CrossRefGoogle Scholar
  27. Lee BD, Eun JB (2009) Purification of arbutin extracts from Asian pear peel by supercritical fluid extraction and solvent extraction using AmberliteTM XAD-4TM. Abstr Pap Am Chem Soc 238:308–308Google Scholar
  28. Lee H-J, Kim K-W (2012) Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated BV2 microglial cells. Inflamm Res 61:817–825CrossRefPubMedGoogle Scholar
  29. Liu CQ, Deng L, Zhang P, Zhang SR, Liu L, Xu T, Wang F, Tan TW (2013a) Screening of high α-arbutin producing strains and production of α-arbutin by fermentation. World J Microbiol Biotechnol 29:1391–1398CrossRefPubMedGoogle Scholar
  30. Liu CQ, Deng L, Zhang P, Zhang SR, Xu T, Wang F, Tan TW (2013b) Toward a cost-effective method for α-arbutin production by using immobilized hydroquinone as a glucosyl acceptor. Process Biochem 48:1447–1452CrossRefGoogle Scholar
  31. Liu CQ, Deng L, Zhing P, Zhang SR, Xu T, Wang F, Tan TW (2013c) Efficient production of α-arbutin by whole-cell biocatalysis using immobilized hydroquinone as a glucosyl acceptor. J Mol Catal B Enzym 91:1–7CrossRefGoogle Scholar
  32. Liu CQ, Zhang P, Liu L, Xu T, Tan TW, Wang F, Deng L (2013d) Isolation of α-arbutin from Xanthomonas CGMCC 1243 fermentation broth by macroporous resin adsorption chromatography. J Chromatogr B 925:104–109CrossRefGoogle Scholar
  33. Liu CQ, Zhang P, Zhang SR, Xu T, Wang F, Deng L (2014) Feeding strategies for the enhanced production of α-arbutin in the fed-batch fermentation of Xanthomonas maltophilia BT-112. Bioprocess Biosyst Eng 37:325–329CrossRefPubMedGoogle Scholar
  34. Lu T, Xia YM (2014) Transglycosylation specificity of glycosyl donors in transglycosylation of stevioside catalysed by cyclodextrin glucanotransferase. Food Chem 159:151–156CrossRefPubMedGoogle Scholar
  35. Lukas B, Schmiderer C, Mitteregger U, Novak J (2010) Arbutin in marjoram and oregano. Food Chem 121:185–190CrossRefGoogle Scholar
  36. Lutterbach R, Stockigt J (1992) High-yield formation of arbutin from hydroquinone by cell-suspension cultures of Rauwolfia serpentina. Helv Chim Acta 75:2009–2011CrossRefGoogle Scholar
  37. Maeda K, Fukuda M (1996) Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther 276:765–769PubMedGoogle Scholar
  38. Mathew S, Adlercreutz P (2013) Regioselective glycosylation of hydroquinone to α-arbutin by cyclodextrin glucanotransferase from Thermoanaerobacter sp. Biochem Eng J 79:187–193CrossRefGoogle Scholar
  39. Moreno A, Damian-Almazo JY, Miranda A, Saab-Rincon G, Gonzalez F, Lopez-Munguia A (2010) Transglycosylation reactions of Thermotoga maritima α-amylase. Enzym Microb Technol 46:331–337CrossRefGoogle Scholar
  40. Mu W, Li W, Wang X, Zhang T, Jiang B (2014) Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase. Appl Microbiol Biotechnol 98:6569–6582CrossRefPubMedGoogle Scholar
  41. Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80:845–860CrossRefGoogle Scholar
  42. Nakagawa H, Dobashi Y, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S (2000) α-Anomer-selective glucosylation of menthol with high yield through a crystal accumulation reaction using lyophilized cells of Xanthomonas campestris WU-9701. J Biosci Bioeng 89:138–144CrossRefPubMedGoogle Scholar
  43. Nishimura T, Kometani T, Takii H, Terada Y, Okada S (1994) Acceptor specificity in the glucosylation reaction of Bacillus-sustilis X-23 α-amylase towards various phenolic-compounds and the structure of kojic acid glucoside. J Ferment Bioeng 78:37–41CrossRefGoogle Scholar
  44. Nishimura T, Kometani T, Takii H, Terada Y, Okada S (1995) Glucosylation of caffeic acid with Bacillus subtilis X-23 α-amylase and a description of the glucosides. J Ferment Bioeng 80:18–23CrossRefGoogle Scholar
  45. Noguchi A, Inohara-Ochiai M, Ishibashi N, Fukami H, Nakayama T, Nakao M (2008) A novel glucosylation enzyme: molecular cloning, expression, and characterization of Trichoderma viride JCM22452 α-amylase and enzymatic synthesis of some flavonoid monoglucosides and oligoglucosides. J Agric Food Chem 56:12016–12024CrossRefPubMedGoogle Scholar
  46. Nomura K, Sugimoto K, Nishiura H, Ohdan K, Nishimura T, Hayashi H, Kuriki T (2008) Glucosylation of acetic acid by sucrose phosphorylase. Biosci Biotechnol Biochem 72:82–87CrossRefPubMedGoogle Scholar
  47. Overwin H, Wray V, Hofer B (2015) Biotransformation of phloretin by amylosucrase yields three novel dihydrochalcone glucosides. J Biotechnol 211:103–106CrossRefPubMedGoogle Scholar
  48. Pavlovic M, Dimitrijevic A, Trbojevic J, Milosavic N, Gavrovic-Jankulovic M, Bezbradica D, Velickovic D (2013) A study of transglucosylation kinetic in an enzymatic synthesis of benzyl alcohol glucoside by α-glucosidase from S. cerevisiae. Russ J Phys Chem A 87:2285–2288CrossRefGoogle Scholar
  49. Piekoszewska A, Ekiert H, Zubek S (2010) Arbutin production in Ruta graveolens L. and Hypericum perforatum L. in vitro cultures. Acta Physiol Plant 32:223–229CrossRefGoogle Scholar
  50. Pop C, Vlase L, Tamas M (2009) Natural resources containing arbutin. Determination of arbutin in the leaves of Bergenia crassifolia (L.) fritsch acclimated in Romania. Not Bot Hort Agrobot Cluj Napoca 37:129–132Google Scholar
  51. Prodanovic R, Milosavic N, Sladic D, Zlatovic M, Bozic B, Velickovic TC, Vujcic Z (2005a) Transglucosylation of hydroquinone catalysed by α-glucosidase from baker's yeast. J Mol Catal B Enzym 35:142–146CrossRefGoogle Scholar
  52. Prodanovic RM, Milosavic NB, Sladic DA, Velickovic TC, Vujcic Z (2005b) Synthesis of hydroquinone-α-glucoside by α-glucosidase from baker's yeast. Biotechnol Lett 27:551–554CrossRefPubMedGoogle Scholar
  53. Sato T, Nakagawa H, Kurosu J, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K (2000) Usami S (000) α-Anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomonas campestris WU-9701. J Biosci Bioeng 90:625–630CrossRefPubMedGoogle Scholar
  54. Sato T, Hasegawa N, Saito J, Umezawa S, Honda Y, Kino K, Kirimura K (2012) Purification, characterization, and gene identification of an α-glucosyl transfer enzyme, a novel type α-glucosidase from Xanthomonas campestris WU-9701. J Mol Catal B Enzym 80:20–27CrossRefGoogle Scholar
  55. Seo ES, Kang J, Lee JH, Kin GE, Kim GJ, Kim D (2009) Synthesis and characterization of hydroquinone glucoside using Leuconostoc mesenteroides dextransucrase. Enzym Microb Technol 45:355–360CrossRefGoogle Scholar
  56. Seo SH, Choi KH, Hwang S, Kim J, Park CS, Rho JR, Cha J (2011) Characterization of the catalytic and kinetic properties of a thermostable Thermoplasma acidophilum α-glucosidase and its transglucosylation reaction with arbutin. J Mol Catal B Enzym 72:305–312CrossRefGoogle Scholar
  57. Seo DH, Jung JH, Ha SJ, Cho HK, Jung DH, Kim TJ, Baek NI, Yoo SH, Park CS (2012a) High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase. Appl Microbiol Biotechnol 94:1189–1197CrossRefPubMedGoogle Scholar
  58. Seo DH, Jung JH, Lee JE, Jeon EJ, Kim WK, Park CS (2012b) Biotechnological production of arbutins (α- and β-arbutins), skin-lightening agents, and their derivatives. Appl Microbiol Biotechnol 95:1417–1425CrossRefPubMedGoogle Scholar
  59. Shen X, Wang J, Chen Z, Yuan Q, Yan Y (2017) High-level de novo biosynthesis of arbutin in engineered Escherichia coli. Metab Eng 42:52–58CrossRefPubMedGoogle Scholar
  60. Shimoda K, Kubota N, Hamada H (2015) Synthesis of resveratrol glycosides by plant glucosyltransferase and cyclodextrin glucanotransferase and their neuroprotective activity. Nat Prod Commun 10:995–996PubMedGoogle Scholar
  61. Skrzypczak-Pietraszek E, Szewczyk A, Piekoszewska A, Ekiert H (2005) Biotransformation of hydroquinone to arbutin in plant in vitro cultures preliminary results. Acta Physiol Plant 27:79–87CrossRefGoogle Scholar
  62. Sugimoto K, Nishimura T, Nomura K, Kuriki T (2003) Syntheses of arbutin-α-glycosides and a comparison of their inhibitory effects with those of α-arbutin and arbutin on human tyrosinase. Chem Pharm Bull 51:798–801CrossRefPubMedGoogle Scholar
  63. Sugimoto K, Nishimura T, Nomura K, Kuriki T (2004) Inhibitory effects of α-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model. Biol Pharm Bull 27:510–514CrossRefPubMedGoogle Scholar
  64. Sugimoto K, Nomura K, Nishiura H, Ohdan K, Nishimura T, Hayashi H, Kuriki T (2007) Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid. J Biosci Bioeng 104:22–29CrossRefPubMedGoogle Scholar
  65. Sugimoto K, Nomura K, Nishiura H, Ohdan K, Nishimura T, Hayashi H, Kuriki T (2008) Sucrose phosphorylases catalyze transglycosylation reactions on carboxylic acid compounds. Biologia 63:1015–1019CrossRefGoogle Scholar
  66. Sun T, Jiang B, Pan BL (2011) Microwave accelerated transglycosylation of rutin by cyclodextrin glucanotransferase from Bacillus sp. SK13.002. Int J Mol Sci 12:3786–3796CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tabata M, Tsukada M, Fukui H (1982) Antimicrobial activity of quinone derivatives from Echium lycopsis callus cultures. Planta Med 44:234–236CrossRefPubMedGoogle Scholar
  68. Tatsuo K, Mitsuo T, Kiyokazu T (1952) Syntheses of glucosides. I. Yakugaku Zasshi 72:13–16CrossRefGoogle Scholar
  69. Tian Y, Xu W, Zhang W, Zhang T, Mu W (2018) Amylosucrase as a transglucosylation tool: from molecular features to bioengineering applications. Biotechnol Adv 36:1540–1552. CrossRefPubMedGoogle Scholar
  70. Wang Y, Xu W, Bai Y, Zhang T, Jiang B, Mu W (2017) Identification of an α-(1,4)-glucan-synthesizing amylosucrase from Cellulomonas carboniz T26. J Agric Food Chem 65:2110–2119CrossRefPubMedGoogle Scholar
  71. Wei M, Ren Y, Liu CX, Liu RC, Zhang P, Wei Y, Xu T, Wang F, Tan TW, Liu CQ (2016) Fermentation scale up for α a-arbutin production by Xanthomonas BT-112. J Biotechnol 233:1–5CrossRefPubMedGoogle Scholar
  72. Woo HJ, Kang HK, Thi Thanh Hanh N, Kim GE, Kim YM, Park JS, Kim D, Cha J, Moon YH, Nam SH, Xia YM, Kimura A, Kim D (2012) Synthesis and characterization of ampelopsin glucosides using dextransucrase from Leuconostoc mesenteroides B-1299CB4: glucosylation enhancing physicochemical properties. Enzym Microb Technol 51:311–318CrossRefGoogle Scholar
  73. Wu PH, Giridhar R, Wu WT (2006) Surface display of transglucosidase on Escherichia coli by using the ice nucleation protein of Xanthomonas campestris and its application in glucosylation of hydroquinone. Biotechnol Bioeng 95:1138–1147CrossRefPubMedGoogle Scholar
  74. Wu PH, Nair GR, Chu IM, Wu WT (2008) High cell density cultivation of Escherichia coli with surface anchored transglucosidase for use as whole-cell biocatalyst for α-arbutin synthesis. J Ind Microbiol Biotechnol 35:95–101CrossRefPubMedGoogle Scholar
  75. Ye F, Yang R, Hua X, Shen Q, Zhao W, Zhang W (2014) Modification of steviol glycosides using α-amylase. LWT Food Sci Technol 57:400–405CrossRefGoogle Scholar
  76. Yu S, Wang Y, Tian Y, Xu W, Bai Y, Zhang T, Mu W (2018) Highly efficient biosynthesis of α-arbutin from hydroquinone by an amylosucrase from Cellulomonas carboniz. Process Biochem 68:93–99CrossRefGoogle Scholar
  77. Zhao NN, Xu YS, Wang K, Zheng SP (2017) Synthesis of isomalto-oligosaccharides by Pichia pastoris displaying the Aspergillus niger α-glucosidase. J Agric Food Chem 65:9468–9474CrossRefPubMedGoogle Scholar
  78. Zhou X, Zheng YT, Wei XM, Yang KD, Yang XK, Wang YT, Xu LM, Du LQ, Huang RB (2011) Sucrose isomerase and its mutants from Erwinia rhapontici can synthesise α-arbutin. Protein Pept Lett 18:1028–1034CrossRefPubMedGoogle Scholar
  79. Zhu W, Gao J (2008) The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J Investig Dermatol Symp Proc 13:20–24CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xingtong Zhu
    • 1
  • Yuqing Tian
    • 1
  • Wenli Zhang
    • 1
  • Tao Zhang
    • 1
    • 2
  • Cuie Guang
    • 1
  • Wanmeng Mu
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.International Joint Laboratory on Food SafetyJiangnan UniversityWuxiChina

Personalised recommendations