Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8175–8185 | Cite as

On the road towards tailor-made rhamnolipids: current state and perspectives

  • Andreas WittgensEmail author
  • Frank Rosenau


Rhamnolipids are biosurfactants with an enormous potential to replace or complement classic surfactants in industrial applications. They consist of one or two L-rhamnose residues linked to one or two 3-hydroxyfatty acids of various chain lengths, which can also contain unsaturated carbon-carbon bonds, yielding a wide variety of different structures each with its specific physicochemical properties. Since different applications of surfactants require specific tenside characteristics related to surface tension reduction, emulsification, and foaming etc., rhamnolipids represent a platform molecule which harbors an enormous potential to adopt tailor-made properties to meet a huge variety of demands of surfactants for food-, healthcare-, and biotechnological applications. We are here giving an overview on current technology to synthesize tailor-made rhamnolipids based on the biotechnological use of different enzymes responsible for rhamnolipid biosynthesis originating from different naturally rhamnolipid-producing microorganism. Furthermore, we present future strategies to determine the number of L-rhamnose and 3-hydroxyfatty acids as well as their specific chain lengths and unsaturations to produce customized rhamnolipids perfectly tuned for every application.


Rhamnolipids Biosurfactant Pseudomonas Burkholderia Biosynthesis pathway 


Funding information

The Fachagentur Nachwachsende Rohstoffe e. V. (FNR), the Deutsche Bundesstiftung Umwelt (DBU), and the Baden-Württemberg Stiftung gGmbH provided financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.


  1. Abalos A, Pinazo A, Infante MR, Casals M, García F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371. CrossRefGoogle Scholar
  2. Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA-H (2008) Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:289–303. CrossRefPubMedGoogle Scholar
  3. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Abdel-Mawgoud AM, Lépine F, Déziel E (2014) A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol 21:156–164. CrossRefPubMedGoogle Scholar
  5. Al-Sulaimani H, Joshi S, Al-Wahaibi Y, Al-Bahry S, Elshafie A, Al-Bemani A (2011) Microbial biotechnology for enhancing oil recovery: current developments and future prospects. Biotechnol Bioinf Bioeng 1:147–158Google Scholar
  6. Andrä J, Rademann J, Howe J, Koch MHJ, Heine H, Zähringer U, Brandenburg K (2006) Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biol Chem 387:301–310. CrossRefPubMedGoogle Scholar
  7. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494CrossRefPubMedGoogle Scholar
  8. Arnold FH (1996) Directed evolution: creating biocatalysts for the future. Chem Eng Sci 51:5091–5102. CrossRefGoogle Scholar
  9. Bahia FM, de Almeida GC, de Andrade LP, Campos CG, Queiroz LR, da Silva RLV, Abdelnur PV, Corrêa JR, Bettiga M, Parachin NS (2018) Rhamnolipids production from sucrose by engineered Saccharomyces cerevisiae. Sci Rep 8:2905. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Banat I, Franzetti A, Gandolfi I, Bestetti G, Martinotti M, Fracchia L, Smyth T, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. CrossRefPubMedGoogle Scholar
  11. Behrens B, Engelen J, Tiso T, Blank LM, Hayen H (2016) Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction. Anal Bioanal Chem 408:2505–2514. CrossRefPubMedGoogle Scholar
  12. Beuker J, Barth T, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R (2016a) High titer heterologous rhamnolipid production. AMB Express 6:124. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Beuker J, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R (2016b) Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor. AMB Express 6:11. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cabrera-Valladares N, Richardson AP, Olvera C, Treviño LG, Déziel E, Lépine F, Soberón-Chávez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194. CrossRefPubMedGoogle Scholar
  15. Cao L, Wang Q, Zhang J, Li C, Yan X, Lou X, Xia Y, Hong Q, Li S (2012) Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil. World J Microbiol Biotechnol 28:2783–2790. CrossRefPubMedGoogle Scholar
  16. Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199. CrossRefPubMedGoogle Scholar
  17. Chamanrokh P, Mazaheri Assadi M, Noohi A, Yahyai S (2008) Emulsan analysis produced by locally isolated bacteria and Acinetobacter calcoaceticus RAG-1. Iranian J Environ Health Sci Eng 5:101–108Google Scholar
  18. Chandran P, Das N (2012) Role of sophorolipid biosurfactant in degradation of diesel oil by Candida tropicalis. Bioremediat J 16:19–30. CrossRefGoogle Scholar
  19. Chen J, Wu Q, Hua Y, Chen J, Zhang H, Wang H (2017) Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Appl Microbiol Biotechnol 101:8309–8319. CrossRefPubMedGoogle Scholar
  20. Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Factories 16:137. CrossRefGoogle Scholar
  21. Costa SGVAO, Déziel E, Lépine F (2011) Characterization of rhamnolipid production by Burkholderia glumae. Lett Appl Microbiol 53:620–627. CrossRefPubMedGoogle Scholar
  22. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedPubMedCentralGoogle Scholar
  23. Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252. CrossRefPubMedGoogle Scholar
  24. Déziel E, Lepine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485:145–152CrossRefPubMedGoogle Scholar
  25. Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013. CrossRefPubMedGoogle Scholar
  26. Dhali D, Coutte F, Arias AA, Auger S, Bidnenko V, Chataigné G, Lalk M, Niehren J, de Sousa J, Versari C, Jacques P (2017) Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C14 isoform. Biotechnol J 12. CrossRefGoogle Scholar
  27. Díaz De Rienzo MA, Kamalanathan ID, Martin PJ (2016) Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC 9027 using foam fractionation. Process Biochem 51:820–827. CrossRefGoogle Scholar
  28. Dubeau D, Déziel E, Woods DE, Lépine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263–274. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Elshikh M, Funston S, Ahmed S, Marchant R, Banat IB (2017) Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. New Biotechnol 36:26–36. CrossRefGoogle Scholar
  30. Fukuoka T, Morita T, Konishi M, Imura T, Sakai H, Kitamoto D (2007) Structural characterisation and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Appl Microbiol Biotechnol 76:801–810. CrossRefPubMedGoogle Scholar
  31. Funston SJ, Tsaousi K, Rudden M, Smyth TJ, Stevenson PS, Marchant R, Banat IM (2016) Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Appl Microbiol Biotechnol 100:7945–7956. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Giani C, Wullbrandt D, Rothert R, Meiwes J (1997) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose. US005658793A. Hoechst AG, Frankfurt a. MGoogle Scholar
  33. Grosso-Becerra MV, González-Valdez A, Granados-Martínez MJ, Morales E, Servín-González L, Méndez JL, Delgado G, Morales-Espinosa R, Ponce-Soto GY, Cocotl-Yañez M, Soberón-Chávez G (2016) Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Appl Microbiol Biotechnol 100:9995–10004. CrossRefPubMedGoogle Scholar
  34. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 81:316–322. CrossRefPubMedGoogle Scholar
  35. Haddad NIA, Wang J, Mu B (2009) Identification of a biosurfactant producing strain: Bacillus subtilis HOB2. Protein Pept Lett 16:7–13CrossRefPubMedGoogle Scholar
  36. Ham JH, Melanson RA, Rush MC (2011) Burkholderia glumae: next major pathogen of rice? Mol Plant Pathol 12:329–339. CrossRefPubMedGoogle Scholar
  37. Häußler S, Nimtz M, Domke T, Wray V, Steinmetz I (1998) Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect Immun 66:1588–1593PubMedPubMedCentralGoogle Scholar
  38. Häußler S, Rohde M, von Neuhoff N, Nimtz M, Steinmetz I (2003) Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infect Immun 71:2970–2975CrossRefPubMedGoogle Scholar
  39. Henkel M, Schmidberger A, Kühnert C, Beuker J, Bernard T, Schwartz T, Syldatk C, Hausmann R (2013) Kinetic modeling of the time course of N-butyryl-homoserine lactone concentration during batch cultivations of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 97:7607–7616. CrossRefPubMedGoogle Scholar
  40. Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhofer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391:1579–1590. CrossRefPubMedGoogle Scholar
  41. Hirata Y, Ryu M, Oda Y, Igarashi K, Nagatsuka A, Furuta T, Sugiura M (2009) Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants. J Biosci Bioeng 108:142–146. CrossRefPubMedGoogle Scholar
  42. Hörmann B, Müller MM, Syldatk C, Hausmann R (2010) Rhamnolipid production by Burkholderia plantarii DSM 9509T. Eur J Lipid Sci Technol 112:674–680. CrossRefGoogle Scholar
  43. Howe J, Bauer J, Andrä J, Schromm AB, Ernst M, Rössle M, Zähringer U, Rademann J, Brandenburg K (2006) Biophysical characterization of synthetic rhamnolipids. FEBS J 273:5101–5112. CrossRefPubMedGoogle Scholar
  44. Irie Y, O'toole GA, Yuk MH (2005) Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol Lett 250:237–243. CrossRefPubMedGoogle Scholar
  45. Jadhav M, Kalme S, Tamboli D, Govindwar S (2011) Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol 51:385–396. CrossRefPubMedGoogle Scholar
  46. Jarvis FG, Johnson MJ (1949) A glycolipide produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126. CrossRefGoogle Scholar
  47. Jeong Y, Kim J, Kim S, Kang Y, Nagamatsu T, Hwang I (2003) Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis 87:890–895. CrossRefGoogle Scholar
  48. Johann S, Seiler TB, Tiso T, Bluhm K, Blank LM, Hollert H (2016) Mechanism-specific and whole-organism ecotoxicity of mono-rhamnolipids. Sci Total Environ 548-549:155–163. CrossRefPubMedGoogle Scholar
  49. Johri A, Blank W, Kaplan D (2002) Bioengineered emulsans from Acinetobacter calcoaceticus RAG-1 transposon mutants. Appl Microbiol Biotechnol 59:217–223CrossRefPubMedGoogle Scholar
  50. Klekner V, Kosaric N (1993) Biosurfactants for cosmetics. In: Kosaric N (ed) Biosurfactants: production—properties—applications. Marcel Dekker, New York, pp 373–390Google Scholar
  51. Kłosowska-Chomiczewska IE, Mędrzycka K, Hallmann E, Karpenko E, Pokynbroda T, Macierzanka A, Jungnickel C (2017) Rhamnolipid CMC prediction. J Colloid Interface Sci 488:10–19. CrossRefPubMedGoogle Scholar
  52. Konishi M, Morita T, Fukuoka T, Imura T, Uemura S, Iwabuchi H, Kitamoto D (2018) Efficient production of acid-form sophorolipids from waste glycerol and fatty acid methyl esters by Candida floricola. J Oleo Sci 67:489–496. CrossRefPubMedGoogle Scholar
  53. Lépine F, Déziel E, Milot S, Villemur R (2002) Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy) alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J Mass Spectrom 37:41–46. CrossRefPubMedGoogle Scholar
  54. Lima TMS, Procópio LC, Brandão FD, Carvalho AMX, Tótola MR, Borges AC (2011) Biodegradability of bacterial surfactants. Biodegradation 22:585–592. CrossRefPubMedGoogle Scholar
  55. Linhardt RJ, Bakhit R, Daniels L, Mayerl F, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368. CrossRefPubMedGoogle Scholar
  56. Liu G, Zhong H, Yang X, Liu Y, Shao B, Liu Z (2018) Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review. Biotechnol Bioeng 115:796–814. CrossRefPubMedGoogle Scholar
  57. Luong TM, Ponamoreva ON, Nechaeva IA, Petrikov KV, Delegan YA, Surin AK, Linklater D, Filonov AE (2018) Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. World J Microbiol Biotechnol 34:20. CrossRefPubMedGoogle Scholar
  58. Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633. CrossRefPubMedGoogle Scholar
  59. Makkar RS, Cameotra SS (1998) Production of biosurfactant at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. J Ind Microbiol Biotechnol 20:48–52CrossRefGoogle Scholar
  60. Manso Pajarron A, de Koster CG, Heerma W, Schmidt M, Haverkamp J (1993) Structure identification of natural rhamnolipid mixtures by fast atom bombardment tandem mass spectrometry. Glycoconj J 10:219–226. CrossRefPubMedGoogle Scholar
  61. Marqués AM, Pinazo A, Farfan M, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117. CrossRefPubMedGoogle Scholar
  62. Martínez R, Schwaneberg U (2013) A roadmap to directed enzyme evolution and screening systems for biotechnological applications. Biol Res 46:395–405. CrossRefPubMedGoogle Scholar
  63. Mata-Sandoval JC, Karns J, Torrents A (1999) HPLC method for characterization of rhamnolipids mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr 864:211–220CrossRefGoogle Scholar
  64. Mixich J, Rapp KM, Vogel M (1990) Process for producing rhamnose from rhamnolipids. EP0550448. Südzucker AG, MannheimGoogle Scholar
  65. Mixich J, Rothert R, Wullbrandt D (1997) Process for the quantitative purification of glycolipids. US5656747A. Hoechst AG, Frankfurt a. MGoogle Scholar
  66. Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araujo JM, Mitchell DA, Ramos LP, Krieger N (2007) Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 147:1–13. CrossRefPubMedGoogle Scholar
  67. Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91:251–264. CrossRefPubMedGoogle Scholar
  68. Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87:167–174. CrossRefPubMedGoogle Scholar
  69. Müller MM, Hörmann B, Kugel M, Syldatk C, Hausmann R (2011) Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Appl Microbiol Biotechnol 89:585–592. CrossRefPubMedGoogle Scholar
  70. Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids—next generation surfactants? J Biotechnol 162:366–380. CrossRefPubMedGoogle Scholar
  71. Nguyen TT, Sabatini DA (2011). Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications. Int J Mol Sci 12:1232–1244. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Nguyen TT, Youssef NH, McInerney MJ, Sabatini DA (2008) Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res 42:1735–1743. CrossRefPubMedGoogle Scholar
  73. Nickzad A, Lépine F, Déziel E (2015) Quorum sensing controls swarming motility of Burkholderia glumae through regulation of Rhamnolipids. PLoS One 10:e0128509. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259. CrossRefGoogle Scholar
  75. Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341. CrossRefPubMedGoogle Scholar
  76. Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:6424–6428CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ochsner UA, Fiechter A, Reiser J (1994a) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795PubMedGoogle Scholar
  78. Ochsner UA, Koch AK, Fiechter A, Reiser J (1994b) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506PubMedPubMedCentralGoogle Scholar
  80. Olvera C, Goldberg JB, Sánchez R, Soberón-Chávez G (1999) The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett 179:85–90. CrossRefPubMedGoogle Scholar
  81. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16:379–394. CrossRefPubMedGoogle Scholar
  82. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767CrossRefPubMedPubMedCentralGoogle Scholar
  83. Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611. CrossRefPubMedGoogle Scholar
  84. Piljac A, Stipcević T, Piljac-Zegarac J, Piljac G (2008) Successful treatment of chronic decubitus ulcer with 0.1% dirhamnolipid ointment. J Cutan Med Surg 12:142–146. CrossRefPubMedGoogle Scholar
  85. Pruthi V, Cameotra SS (1997) Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae—an antarctic strain. World J Microbiol Biotechnol 13:137–139CrossRefGoogle Scholar
  86. Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146:2803–2814. CrossRefPubMedGoogle Scholar
  87. Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718. CrossRefPubMedGoogle Scholar
  88. Rau U, Nguyen LA, Schulz S, Wray V, Nimtz M, Roeper H, Koch H, Lang S (2005) Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 66:551–559. CrossRefPubMedGoogle Scholar
  89. Reetz MT (2016) Directed evolution of selective enzymes: catalysts for organic chemistry and biotechnology. Wiley-VCH, Weinheim. CrossRefGoogle Scholar
  90. Rehm BH, Mitsky TA, Steinbüchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Remichkova M, Galabova D, Roeva I, Karpenko E, Shulga A, Galabov AS (2008) Anti-herpesvirus activities of Pseudomonas sp. S-17 rhamnolipid and its complex with alginate. Z Naturforsch C 63:75–81CrossRefPubMedGoogle Scholar
  92. Řezanka T, Siristova L, Sigler K (2011) Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 15:697–709. CrossRefPubMedGoogle Scholar
  93. Rosenau F, Isenhardt S, Gdynia A, Tielker D, Schmidt E, Tielen P, Schobert M, Jahn D, Wilhelm S, Jaeger KE (2010) Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa. FEMS Microbiol Lett 309:25–34. CrossRefPubMedGoogle Scholar
  94. Rosenberg E, Ron EZ (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316CrossRefPubMedGoogle Scholar
  95. Saika A, Utashima Y, Koike H, Yamamoto S, Kishimoto T, Fukuoka T, Morita T (2018) Biosynthesis of mono-acylated mannosylerythritol lipid in an acyltransferase gene-disrupted mutant of Pseudozyma tsukubaensis. Appl Microbiol Biotechnol 102:1759–1767. CrossRefPubMedGoogle Scholar
  96. Sha R, Jiang L, Meng Q, Zhang G, Song Z (2011) Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. J Basic Microbiol 51:1–9. CrossRefGoogle Scholar
  97. Sharma R, Singh J, Verma N (2018) Optimization of rhamnolipid production from Pseudomonas aeruginosa PBS towards application for microbial enhanced oil recovery. 3 Biotech 8:20. CrossRefPubMedGoogle Scholar
  98. Sinumvayo JP, Ishimwe N (2015) Agriculture and food applications of Rhamnolipids and its production by Pseudomonas aeruginosa. J Chem Eng Process Technol 6:223. CrossRefGoogle Scholar
  99. Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725. CrossRefPubMedGoogle Scholar
  100. Stacey SP, McLaughlin MJ, Çakmak I, Hettiarachchi GM, Scheckel KG, Karkkainen M (2008) Root uptake of lipophilic zinc-rhamnolipid complexes. J Agric Food Chem 56:2112–2117. CrossRefPubMedGoogle Scholar
  101. Stipcević T, Pijac A, Pijac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34. CrossRefPubMedGoogle Scholar
  102. Syldatk C, Lang S, Matulovic U, Wagner F (1985a) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch C 40:61–67. CrossRefPubMedGoogle Scholar
  103. Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985b) Chemical and physical characteritation of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch C 40:51–60. CrossRefPubMedGoogle Scholar
  104. Tavares LFD, Silva PM, Junqueira M, Mariano DCO, Nogueira FCS, Domont GB, Freire DMG Neves BC (2012) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97:1909–1921. CrossRefPubMedGoogle Scholar
  105. Tiso T, Sabelhaus A, Behrens B, Wittgens A, Rosenau F, Hayen H, Blank LM (2016) Creating metabolic demand as an engineering strategy in Pseudomonas putida—Rhamnolipid synthesis as an example. Metab Eng Commun 3:234–244. CrossRefPubMedPubMedCentralGoogle Scholar
  106. Tiso T, Zauter R, Tulke H, Leuchtle B, Li WJ, Behrens B, Wittgens A, Rosenau F, Hayen H, Blank LM (2018) Designer rhamnolipids by reduction of congener diversity: production and characterization. Microb Cell Factories 16:225. CrossRefGoogle Scholar
  107. Toribio J, Escalante AE, Soberón-Chávez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112:1082–1087. CrossRefGoogle Scholar
  108. Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur J Lipid Sci Technol 105:563–571. CrossRefGoogle Scholar
  109. Van Bogaert I, Fleurackers S, Van Kerrebroeck S, Develter D, Soetaert W (2011) Production of new-to-nature sophorolipids by cultivating the yeast Candida bombicola on unconventional hydrophobic substrates. Biotechnol Bioeng 108:734–741. CrossRefPubMedGoogle Scholar
  110. Van Hamme JD, Urban J (2009) Biosurfactants in bioremediation. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation, soil biology, vol 17. Springer-Verlag, Heidelberg, pp 73–89CrossRefGoogle Scholar
  111. Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620CrossRefPubMedGoogle Scholar
  112. Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5095–5108. CrossRefPubMedPubMedCentralGoogle Scholar
  113. Velikonja J, Kosaric N (1993) Biosurfactants in food applications. In: Kosaric N (ed) Biosurfactants: production—properties—applications. Marcel Dekker, New York, pp 419–446Google Scholar
  114. Wang S, Mulligan CN (2009) Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings. Process Biochem 44:296–301. CrossRefGoogle Scholar
  115. Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA 3rd, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853. CrossRefPubMedGoogle Scholar
  116. Wilhelm S, Gdynia A, Tielen P, Rosenau F, Jaeger KE (2007) The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol 189:6695–6703. CrossRefPubMedPubMedCentralGoogle Scholar
  117. Witek-Krowiak A, Witek J, Gruszczynska A, Szafran RG, Kozlecki T, Modelski S (2011) Ultrafiltrative separation of rhamnolipid from culture medium. World J Microbiol Biotechnol 27:1961–1964. CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wittgens A (2013) Konstruktion neuer Produktionsstämme für die heterologe Rhamnolipidsynthese in dem nicht-pathogenen Wirt Pseudomonas putida KT2440. Dissertation, Ulm UniversityGoogle Scholar
  119. Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Factories 10:80. CrossRefGoogle Scholar
  120. Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R, Syldatk C, Wilhelm S, Rosenau F (2017) Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol 101:2865–2878. CrossRefPubMedGoogle Scholar
  121. Wittgens A, Santiago-Schuebel B, Henkel M, Tiso T, Blank LM, Hausmann R, Hofmann D, Wilhelm S, Jaeger KE, Rosenau F (2018) Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida-a step forward to tailor-made rhamnolipids. Appl Microbiol Biotechnol 102:1229–1239. CrossRefPubMedGoogle Scholar
  122. Zhang CY, Zhang JC (1993) A pilot test of EOR by in situ microorganism fermentation in the Daqing oil field. Dev Pet Sci 39:231–244. CrossRefGoogle Scholar
  123. Zhang L, Veres-Schalnat TA, Somogyi A, Pemberton JE, Maier RM (2012) Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays. Appl Environ Microbiol 78:8611–8622. CrossRefPubMedPubMedCentralGoogle Scholar
  124. Zhu K, Rock CO (2008) RhlA converts β-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the β-hydroxydecanoyl- β-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Pharmaceutical BiotechnologyUlm-UniversityUlmGermany
  2. 2.Ulm Center for Peptide PharmaceuticalsUlmGermany
  3. 3.Synthesis of MacromoleculesMax-Planck-Institute for Polymer Research MainzMainzGermany

Personalised recommendations