Applied Microbiology and Biotechnology

, Volume 102, Issue 19, pp 8493–8500 | Cite as

Imaging mass spectrometry-guided fast identification of antifungal secondary metabolites from Penicillium polonicum

  • Jing Bai
  • Peng Zhang
  • Guanhu Bao
  • Jin-Gang Gu
  • Lida Han
  • Li-Wen ZhangEmail author
  • Yuquan Xu
Applied microbial and cell physiology


The discovery of antibiotics from microorganisms using classic bioactivity screens suffers from heavy labor and high re-discovery rate. Recently, largely uncovered biosynthetic potentials were unveiled by new approaches, such as genetic manipulation of “silent” biosynthetic gene clusters, innovative data acquisition, and processing methods. In this work, a fast and efficient antibiotic identification pipeline based on the MALDI-TOF imaging mass spectrometry was applied to study the antifungal metabolites during the confrontation of two fungal species, Penicillium polonicum and wilt-inducing fungus Fusarium oxysporum. By visualizing the spatial distribution of metabolites directly on the microbial colony and surrounding media, we predicted the antifungal candidates before isolating pure compounds and individually testing their bioactivity, which subsequently guided the identification of target molecules using classic chromatographic methods. Via this procedure, we successfully identified two antifungal metabolites, fructigenine A and B, which belong to indole alkaloid class and were not reported for antifungal activity. Our work assigned new bioactivity to previously reported compounds and more importantly showed the efficiency of this approach towards quick discovery of bioactive compounds, which can help study the vast unexploited synthetic potential of microbial secondary metabolites.


MALDI-TOF imaging mass spectrometry Penicillium polonicum Antifungal secondary metabolite Indole alkaloid 



We thank Agricultural Culture Collection of China (ACCC) and Professor Bingyan Xie from Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, for generously providing the Penicillium polonicum strains. We also thank the Research Facility Center of the Biotechnology Institute for providing equipment, HPLC-HRMS (Agilent, USA), and the software.


This work was supported by the “948” Project of the Ministry of Agriculture of China (2016-X43 to Y.X.), National Natural Science Foundation of China (31500079 to LW.Z. and 31570093 to Y.X.), The Agricultural Science and Technology Innovation Program (CAAS-XTCX2016012 to Y.X.), and the key project of the China National Tobacco Corporation (110201502019 to Y.X.).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no conflict of interest, and that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

253_2018_9218_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1252 kb)


  1. Arai K, Kimura K, Mushiroda T, Yamamoto Y (1989) Structures of fructigenines A and B, new alkaloids isolated from Penicillium fructigenum Takeuchi. Chem Pharm Bull(Tokyo) 37(11):2937–2939CrossRefGoogle Scholar
  2. Bladt TT, Frisvad JC, Knudsen PB, Larsen TO (2013) Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules 18(9):11338–11376. CrossRefPubMedGoogle Scholar
  3. Bleich R, Watrous JD, Dorrestein PC, Bowers AA, Shank EA (2015) Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis. Proc Natl Acad Sci U S A 112(10):3086–3091. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bu YY, Yamazaki H, Takahashi O, Kirikoshi R, Ukai K, Namikoshi M (2016) Penicyrones A and B, an epimeric pair of alpha-pyrone-type polyketides produced by the marine-derived Penicillium sp. J Antibiot (Tokyo) 69(1):57–61. CrossRefGoogle Scholar
  5. Butler MS, Blaskovich MAT, Owen JG, Cooper MA (2016) Old dogs and new tricks in antimicrobial discovery. Curr Opin Microbiol 33:25–34. CrossRefPubMedGoogle Scholar
  6. Chai Y-J, Cui C-B, Li C-W, Wu C-J, Tian C-K, Hua W (2012) Activation of the dormant secondary metabolite production by introducing gentamicin-resistance in a marine-eerived Penicillium purpurogenum G59. Mar Drugs 10(3):559–582. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chang JHMH (2004) Synthesis and anti-inflammatory activity of fructigenine A derivatives. Biotechnol Bioprocess Eng 9(1):59–61CrossRefGoogle Scholar
  8. Clevenger KD, Bok JW, Ye R, Miley GP, Verdan MH, Velk T, Chen C, Yang K, Robey MT, Gao P, Lamprecht M, Thomas PM, Islam MN, Palmer JM, Wu CC, Keller NP, Kelleher NL (2017) A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 13(8):895–901. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Du L, Yang X, Zhu T, Wang F, Xiao X, Park H, Gu Q (2009) Diketopiperazine alkaloids from a deep ocean sediment derived fungus Penicillium sp. Chem Pharm Bull(Tokyo) 57(8):873–876CrossRefGoogle Scholar
  10. Fan A, Mi W, Liu Z, Zeng G, Zhang P, Hu Y, Fang W, Yin W-B (2017) Deletion of a histone acetyltransferase leads to the pleiotropic activation of natural products in Metarhizium robertsii. Org Lett 19(7):1686–1689. CrossRefPubMedGoogle Scholar
  11. Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157(3):493–502. CrossRefGoogle Scholar
  12. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA, Robert A (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49(201):e41Google Scholar
  13. Gonzalez DJ, Xu Y, Yang YL, Esquenazi E, Liu WT, Edlund A, Duong T, Du L, Molnar I, Gerwick WH, Jensen PR, Fischbach M, Liaw CC, Straight P, Nizet V, Dorrestein PC (2012) Observing the invisible through imaging mass spectrometry, a window into the metabolic exchange patterns of microbes. J Proteome 75(16):5069–5076. CrossRefGoogle Scholar
  14. Ho YN, Shu LJ, Yang YL (2017) Imaging mass spectrometry for metabolites: technical progress, multimodal imaging, and biological interactions. Wiley Interdiscip Rev Syst Biol Med 9(5):32. CrossRefGoogle Scholar
  15. Hoefler BC, Stubbendieck RM, Josyula NK, Moisan SM, Schulze EM, Straight PD (2017) A link between linearmycin biosynthesis and extracellular vesicle genesis connects specialized metabolism and bacterial membrane physiology. Cell chem Biol 24(10):1238–1249.e7. CrossRefPubMedGoogle Scholar
  16. Holzlechner M, Reitschmidt S, Gruber S, Zeilinger S, Marchetti-Deschmann M (2016) Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging. Proteomics 16(11–12):1742–1746. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jae HK, Kim BG, Joong-Hoon A (2006) Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus. FEMS Microbiol Lett 258(2):263–268. CrossRefGoogle Scholar
  18. Kang X, Liu C, Liu D, Zeng L, Shi Q, Qian K, Xie B (2016) The complete mitochondrial genome of huperzine A-producing endophytic fungus Penicillium polonicum. Mitochondrial DNA Part B 1(1):202–203. CrossRefGoogle Scholar
  19. Kaur T, Kaur A, Sharma V, Manhas RK (2016) Purification and characterization of a new antifungal compound 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic acid methyl ester from Streptomyces hydrogenans strain DH16. Front Microbiol 7:1004. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kersten RD, Yang YL, Xu Y, Cimermancic P, Nam SJ, Fenical W, Fischbach MA, Moore BS, Dorrestein PC (2011) A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat Chem Biol 7(11):794–802. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kusari S, Lamshoeft M, Kusari P, Gottfried S, Zuehlke S, Louven K, Hentschel U, Kayser O, Spiteller M (2014) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77(12):2577–2584. CrossRefPubMedGoogle Scholar
  22. Li SM (2010) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 27(1):57–78. CrossRefPubMedGoogle Scholar
  23. Lin TS, Chiang YM, Wang CCC (2016) Biosynthetic pathway of the reduced polyketide product citreoviridin in Aspergillus terreus var. aureus revealed by heterologous expression in Aspergillus nidulans. Org Lett 18(6):1366–1369. CrossRefPubMedGoogle Scholar
  24. Michelsen CF, Watrous J, Glaring MA, Kersten R, Koyama N, Dorrestein PC, Stougaard P (2015) Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a greenlandic suppressive soil. Mbio 6(2):e00079–e00015. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nielsen JC, Grijseels S, Prigent S, Ji B, Dainat J, Nielsen KF, Frisvad JC, Workman M, Nielsen J (2017) Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat Microbiol 2:17044. CrossRefPubMedGoogle Scholar
  26. Pezet R, Gindro K, Viret O, Spring JL (2004) Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol Mol Plant 65(6):297–303. CrossRefGoogle Scholar
  27. Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13(8):509–523. CrossRefPubMedGoogle Scholar
  28. Seneviratne HK, Dalisay DS, Kim KW, Moinuddin SGA, Yang H, Hartshorn CM, Davin LB, Lewis NG (2015) Non-host disease resistance response in pea (Pisum sativum) pods: biochemical function of DRR206 and phytoalexin pathway localization. Phytochemistry 113:140–148. CrossRefPubMedGoogle Scholar
  29. Shimada A, Kusano M, Takeuchi S, Fujioka S, Inokuchi T, Kimura Y (2002) Aspterric acid and 6-hydroxymellein, inhibitors of pollen development in Arabidopsis thaliana produced by Aspergillus terreus. Z Naturforsch C 57(5–6):459–464CrossRefPubMedGoogle Scholar
  30. Spraker JE, Sanchez LM, Lowe TM, Dorrestein PC, Keller NP (2016) Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues. ISME J 10(9):2317–2330. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. Mbio 4(4):e00459–e00413. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wayne, PA (2002) National committee for clinical laboratory standards. Performance standards for antimicrobial disc susceptibility testing. 12:01–53Google Scholar
  33. Xin ZH, Zhu WM, Gu QQ, Fang YC, Duan L, Cui CB (2005) A new cytotoxic compound from Penicillium auratiogriseum, symbiotic or epiphytic fungus of sponge Mycale plumose. Chin Chem Lett 16(9):1227–1229Google Scholar
  34. Xin Z, Fang Y, Zhu T, Duan L, Gu Q, Zhu W (2006) Antitumor components from sponge-derived fungus Penicillium auratiogriseum Sp-19. Chin J Mar Drugs 25(6):1–6Google Scholar
  35. Xu W, Gavia DJ, Tang Y (2014) Biosynthesis of fungal indole alkaloids. Nat Prod Rep 31(10):1474–1487. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yaegashi J, Oakley BR, Wang CCC (2014) Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. J Ind Microbiol Biotechnol 41(2):433–442. CrossRefPubMedGoogle Scholar
  37. Yang YL, Xu Y, Straight P, Dorrestein PC (2009) Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5(12):885–887. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yang YL, Xu Y, Kersten RD, Liu WT, Meehan MJ, Moore BS, Bandeira N, Dorrestein PC (2011) Connecting chemotypes and phenotypes of cultured marine microbial assemblages by imaging mass spectrometry. Angew Chem Int Ed Engl 50(26):5839–5842. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yang JY, Phelan VV, Simkovsky R, Watrous JD, Trial RM, Fleming TC, Wenter R, Moore BS, Golden SS, Pogliano K, Dorrestein PC (2012) Primer on agar-based microbial imaging mass spectrometry. J Bacteriol 194(22):6023–6028. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jing Bai
    • 1
  • Peng Zhang
    • 1
    • 2
  • Guanhu Bao
    • 2
  • Jin-Gang Gu
    • 3
  • Lida Han
    • 1
  • Li-Wen Zhang
    • 1
    Email author
  • Yuquan Xu
    • 1
  1. 1.Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health effects, State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiPeople’s Republic of China
  3. 3.Agricultural Culture Collection of China, Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations