Advertisement

Secondary metabolite production by cereal-associated penicillia during cultivation on cereal grains

  • Magnus Hallas-Møller
  • Kristian Fog Nielsen
  • Jens Christian Frisvad
Applied microbial and cell physiology

Abstract

Cereals are vulnerable substrates for fungal growth and subsequent mycotoxin contamination. One of the major fungal genera to colonize the ecosystem of stored grain is Penicillium, especially species in the series of Viridicata and Verrucosa. Culturing these species on grains, we hoped to induce the production of relevant secondary metabolites produced by these fungi in the early stage of cereal breakdown. In a multivariate setup six different cereal grains (wheat, rye, barley, oat, rice, and maize), one kind of white beans, and two standard fungal media, Yeast Extract Sucrose agar (YES agar) and Czapek Yeast Autolysate agar (CYA agar), were inoculated with the ten most important cereal-associated species from Penicillium (P. aurantiogriseum, P. cyclopium, P. freii, P. melanoconidium, P. neoechinulatum, P. polonicum, P. tricolor, P. viridicatum, P. hordei, and P. verrucosum). P. nordicum is a meat-associated species, which was included due to its chemical association with P. verrucosum, in addition to see if a substrate change would alter the profile of known chemistry. We found that cereals function very well as substrates for secondary metabolite production, but did not present significantly different secondary metabolite profiles, concerning known chemistry, as compared to standard laboratory agar media. However, white beans altered the semi-quantitative secondary metabolite profiles for several species. Correlations between substrates and certain metabolites were observed, as illuminated by principal component analysis. Many bioactive secondary metabolites were observed for the first time in the analyzed fungal species, including ergot type alkaloids in P. hordei.

Keywords

Filamentous fungi Cereals Mycotoxins Penicillium Viridicata Chemotaxonomy Secondary metabolites 

Notes

Acknowledgments

We are grateful to Agilent Technologies for the Thought Leader Donation of the UHPLC-QTOFMS system.

Funding

We would like to thank the Novo Nordisk Foundation grant #NNF 130 C0005201 for the funding of this study.

Compliance with ethical standards

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9213_MOESM1_ESM.pdf (19.9 mb)
ESM 1 (PDF 20327 kb)

References

  1. Abdallah MF, Girgin G, Baydar T, Krska R, Sulyok M (2017) Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC-MS/MS. J Sci Food Agric 97:4419–4428.  https://doi.org/10.1002/jsfa.8293 CrossRefPubMedGoogle Scholar
  2. Adatia R, Heaton JM, Macgeorge KM, Mantle PG (1991) Acute histopathological changes produced by Penicillium aurantiogriseum nephrotoxin in the rat. Int J Exp Pathol 72:47–53PubMedPubMedCentralGoogle Scholar
  3. Antia BS, Aree T, Kasettrathat C, Wiyakrutta S, Ekpa OD, Ekpe UJ, Mahidol C, Ruchirawat S, Kittakoop P (2011) Itaconic acid derivatives and diketopiperazine from the marine-derived fungus Aspergillus aculeatus CRI322-03. Phytochemistry 72:816–820.  https://doi.org/10.1016/j.phytochem.2011.02.013 CrossRefPubMedGoogle Scholar
  4. Axberg K, Jansson G, Svensson G, Hult K (1997) Varietal differences in accumulation of ochratoxin A in barley and wheat cultivars after inoculation of Penicillium verrucosum. Acta Agric Scand Sect B Soil Plant Sci 47:229–237.  https://doi.org/10.1080/09064719709362465 Google Scholar
  5. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516.  https://doi.org/10.1128/CMR.16.3.497 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ciegler A, Fennell DI, Sansing GA, Detroy RW, Bennett GA (1973) Mycotoxin-producing strains of Penicillium viridicatum: classification into subgroups. Appl Environ Microbiol 26:271–278Google Scholar
  7. Coufal-Majewski S, Stanford K, McAllister T, Blakley B, McKinnon J, Chaves AV, Wang Y (2016) Impacts of cereal ergot in food animal production. Front Vet Sci 3:15.  https://doi.org/10.3389/fvets.2016.00015 CrossRefPubMedPubMedCentralGoogle Scholar
  8. El-Neketi M, Ebrahim W, Lin W, Gedara S, Badria F, HE a S, Lai D, Proksch P (2013) Alkaloids and polyketides from Penicillium citrinum, an endophyte isolated from the Moroccan plant Ceratonia siliqua. J Nat Prod 76:1099–1104.  https://doi.org/10.1021/np4001366 CrossRefPubMedGoogle Scholar
  9. Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487.  https://doi.org/10.1016/j.mib.2008.10.007 CrossRefPubMedGoogle Scholar
  10. Frisvad JC, Filtenborg O (1983) Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites. Appl Environ Microbiol 46:1301–1310PubMedPubMedCentralGoogle Scholar
  11. Frisvad JC, Filtenborg O (1989) Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia 81:837–861.  https://doi.org/10.2307/3760103 CrossRefGoogle Scholar
  12. Frisvad JC, Samson RA (1991) Mycotoxin produced by species of Penicillium and Aspergillus occurring in cereals. In: Chelkowski J (ed) Cereal grain: mycotoxins, fungi and quality in drying and storage. Elsevier Inc., Amsterdam, pp 441–476Google Scholar
  13. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium: a guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–174Google Scholar
  14. Frisvad JC, Thrane U (1987) Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (diodearray detection). J Chromatogr A 404:195–214.  https://doi.org/10.1016/S0021-9673(01)86850-3 CrossRefGoogle Scholar
  15. Frisvad JC, Filtenborg O, Wicklow DT (1987) Terverticillate penicillia isolated from underground seed caches and cheek pouches of banner-tailed kangaroo rats (Dipodomys spectabilis). Can J Bot 65:765–773.  https://doi.org/10.1139/b87-102 CrossRefGoogle Scholar
  16. Frisvad JC, Seifert KA, Samson A, Mills JT (1994) Penicillium tricolor, a new mould species from Canadian wheat. Can J Bot 72:933–939.  https://doi.org/10.1139/b94-118 CrossRefGoogle Scholar
  17. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins , drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241Google Scholar
  18. Gerhards N, Neubauer L, Tudzynski P, Li S-M (2014) Biosynthetic pathways of ergot alkaloids. Toxins 6:3281–3295.  https://doi.org/10.3390/toxins6123281 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Giubergia S, Phippen C, Gotfredsen CH, Nielsen KF, Gram L (2016) Influence of niche-specific nutrients on secondary metabolism in Vibrionaceae. Appl Environ Microbiol 82:4035–4044.  https://doi.org/10.1128/AEM.00730-16 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grijseels S, Nielsen JC, Randelovic M, Nielsen J, Nielsen KF, Workman M, Frisvad JC (2016) Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites. Sci Rep 6:35112.  https://doi.org/10.1038/srep35112 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hallas-Møller M, Nielsen KF, Frisvad JC (2016) Production of the Fusarium mycotoxin moniliformin by Penicillium melanoconidium. J Agric Food Chem 64:4505–4510.  https://doi.org/10.1021/acs.jafc.6b00298 CrossRefPubMedGoogle Scholar
  22. Hammerschmidt L, Wray V, Lin W, Kamilova E, Proksch P, Aly AH (2012) New styrylpyrones from the fungal endophyte Penicillium glabrum isolated from Punica granatum. Phytochem Lett 5:600–603.  https://doi.org/10.1016/j.phytol.2012.06.003 CrossRefGoogle Scholar
  23. Hautbergue T, Puel O, Tadrist S, Meneghetti L, Péan M, Delaforge M, Debrauwer L, Oswald IP, Jamin EL (2017) Evidencing 98 secondary metabolites of Penicillium verrucosum using substrate isotopic labeling and high-resolution mass spectrometry. J Chromatogr B 1071:29–43.  https://doi.org/10.1016/j.jchromb.2017.03.011 CrossRefGoogle Scholar
  24. Jakubczyk D, Cheng JZ, O’Connor SE (2014) Biosynthesis of the ergot alkaloids. Nat Prod Rep 31:1328–1338.  https://doi.org/10.1039/C4NP00062E CrossRefPubMedGoogle Scholar
  25. Kildgaard S, Mansson M, Dosen I, Klitgaard A, Frisvad JC, Larsen TO, Nielsen KF (2014) Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS library. Mar Drugs 12:3681–3705.  https://doi.org/10.3390/md12063681 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Klitgaard A, Iversen A, Andersen MR, Larsen TO, Frisvad JC, Nielsen KF (2014) Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem 406:1933–1943.  https://doi.org/10.1007/s00216-013-7582-x CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lai D, Brötz-Oesterhelt H, Müller WEG, Wray V, Proksch P (2013) Bioactive polyketides and alkaloids from Penicillium citrinum, a fungal endophyte isolated from Ocimum tenuiflorum. Fitoterapia 91:100–106.  https://doi.org/10.1016/j.fitote.2013.08.017 CrossRefPubMedGoogle Scholar
  28. Lam YKT, Dai P, Borris R, Dombrowski A, Ransom R, Young G, Beer M, Middlemiss D, Smith J (1994) A new indole from Penicillium daleae. J Antibiot (Tokyo) 47:724–726.  https://doi.org/10.7164/antibiotics.47.724 CrossRefGoogle Scholar
  29. Larsen TO, Frisvad JC, Jensen SR (1992) Aurantiamine, a diketopiperazine from two varieties of Penicillium aurantiogriseum. Phytochemistry 31:1613–1615.  https://doi.org/10.1016/0031-9422(92)83116-G CrossRefGoogle Scholar
  30. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18.  https://doi.org/10.1016/j.envint.2008.06.007 CrossRefGoogle Scholar
  31. Li J, Wang J, Jiang C-S, Li G, Guo Y-W (2014) (+)-Cyclopenol, a new naturally occurring 7-membered 2,5-dioxopiperazine alkaloid from the fungus Penicillium sclerotiorum endogenous with the Chinese mangrove Bruguiera gymnorrhiza. J Asian Nat Prod Res 16(5):542–548.  https://doi.org/10.1080/10286020.2014.911290 CrossRefPubMedGoogle Scholar
  32. Lund F, Frisvad JC (1994) Chemotaxonomy of Penicillium aurantiogriseum and related species. Mycol Res 98:481–492.  https://doi.org/10.1016/S0953-7562(09)80466-8 CrossRefGoogle Scholar
  33. Macgeorge KM, Mantle PG (1990) Nephrotoxicity of Penicillium aurantiogriseum and P. commune from an endemic nephropathy area of Yugoslavia. Mycopathologia 112:139–145.  https://doi.org/10.1007/BF00436643 CrossRefPubMedGoogle Scholar
  34. Maiya S, Grundmann A, Li SM, Turner G (2006) The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. ChemBioChem 7:1062–1069.  https://doi.org/10.1002/cbic.200600003 CrossRefPubMedGoogle Scholar
  35. Malir F, Ostry V, Pfohl-Leszkowicz A, Malir J, Toman J (2016) Ochratoxin a: 50 years of research. Toxins 8:12–15.  https://doi.org/10.3390/toxins8070191 CrossRefGoogle Scholar
  36. Mantle PG (1994) Renal histopathological responses to nephrotoxic Penicillium aurantiogriseum in the rat during pregnancy, lactation and after weaning. Nephron 66:93–98.  https://doi.org/10.1159/000187773 CrossRefPubMedGoogle Scholar
  37. Mantle PG, Miljkovic A, Udupa V, Dobrota M (1998) Does apoptosis cause renal atrophy in Balkan endemic nephropathy? Lancet 352:1118–1119.  https://doi.org/10.1016/s0140-6736(05)79758-0 CrossRefPubMedGoogle Scholar
  38. Mantle PG, McHugh KM, Fincham JE (2010) Contrasting nephropathic responses to oral administration of extract of cultured Penicillium polonicum in rat and primate. Toxins 2:2083–2097.  https://doi.org/10.3390/toxins2082083 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Miljkovic A, Pfohl-Leszkowicz A, Dobrota M, Mantle PG (2003) Comparative responses to mode of oral administration and dose of ochratoxin A or nephrotoxic extract of Penicillium polonicum in rats. Exp Toxicol Pathol 54:305–312.  https://doi.org/10.1078/0940-2993-00262 CrossRefPubMedGoogle Scholar
  40. Miyao K (1960) The structure of fungisporin (studies on fungisporin III). Bull Agric Chem Soc Japan 24:23–30.  https://doi.org/10.1080/03758397.1960.10857626 Google Scholar
  41. Morren JA, Galvez-Jimenez N (2010) Where is dihydroergotamine mesylate in the changing landscape of migraine therapy? Expert Opin Pharmacother 11:3085–3093.  https://doi.org/10.1517/14656566.2010.533839 CrossRefPubMedGoogle Scholar
  42. Mulinge SK, Chesters CGC (1970) Ecology of fungi associated with moist stored barley grain. Ann Appl Biol 65:277–284.  https://doi.org/10.1111/j.1744-7348.1970.tb04588.x CrossRefGoogle Scholar
  43. Muller HM, Boley A (1993) Studies on the refrigerated storage of wheat (Triticum aestivum). 2. Ergosterol, xanthomegnin, viomellein and brevianamide A after inoculation with Penicillium viridicatum. Zentralbl Mikrobiol 148:419–431.  https://doi.org/10.1016/S0232-4393(11)80307-0 PubMedGoogle Scholar
  44. Muñoz K, Vega M, Rios G, Geisen R, Degen GH (2011) Mycotoxin production by different ochratoxigenic Aspergillus and Penicillium species on coffee- and wheat-based media. Mycotoxin Res 27:239–247.  https://doi.org/10.1007/s12550-011-0100-0 CrossRefPubMedGoogle Scholar
  45. Nielsen KF, Månsson M, Rank C, Frisvad JC, Larsen TO (2011) Dereplication of microbial natural products by LC-DAD-TOFMS. J Nat Prod 74:2338–2348.  https://doi.org/10.1021/np200254t CrossRefPubMedGoogle Scholar
  46. Oliveira MS, Rocha A, Sulyok M, Krska R, Mallmann CA (2017) Natural mycotoxin contamination of maize (Zea mays L.) in the south region of Brazil. Food Control 73:127–132.  https://doi.org/10.1016/j.foodcont.2016.07.033 CrossRefGoogle Scholar
  47. Perez-Lloret S, Rascol O (2010) Dopamine receptor agonists for the treatment of early or advanced Parkinsons disease. CNS Drugs 24:941–968.  https://doi.org/10.2165/11537810-000000000-00000 CrossRefPubMedGoogle Scholar
  48. Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, LondonGoogle Scholar
  49. R Core Team (2015) R: language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/
  50. Richard JL, Payne GA (2003) Mycotoxins: risk in plant, animal, and human systems. Council for Agricultural Science and Technology (CAST) Report, AmesGoogle Scholar
  51. Roberts A, Beaumont C, Manzarpour A, Mantle P (2016) Purpurolic acid: a new natural alkaloid from Claviceps purpurea (Fr.) Tul. Fungal Biol 120:104–110.  https://doi.org/10.1016/j.funbio.2015.10.011 CrossRefPubMedGoogle Scholar
  52. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi, CBS Labora. CBS-KNAW, UtrechtGoogle Scholar
  53. Sansing GA, Lillehoj EB, Detroy RW, Miller MA (1976) Synergistic toxic effects of citrinin, ochratoxin A and penicillic acid in mice. Toxicon 14:213–220.  https://doi.org/10.1016/0041-0101(76)90009-X CrossRefPubMedGoogle Scholar
  54. Savard ME, Miller JD, Blais LA, Seifert KA, Samson RA (1994) Secondary metabolites of Penicillium bilaii strain PB-50. Mycopathologia 127:19–27.  https://doi.org/10.1007/BF01104007 CrossRefPubMedGoogle Scholar
  55. Scott DB (1964) Toxigenic fungi isolated from cereal and legume products. Mycopathol Mycol Appl 25:213–222.  https://doi.org/10.1007/bf02049914 CrossRefGoogle Scholar
  56. Šegvić Klarić M, Rašić D, Peraica M (2013) Deleterious effects of mycotoxin combinations involving ochratoxin A. Toxins 5:1965–1987.  https://doi.org/10.3390/toxins5111965 CrossRefGoogle Scholar
  57. Shimada A, Kusano M, Takeuchi S, Inokuchi T, Fujioka S, Kimura Y (2002) Aspterric acid and 6-hydroxymellein, inhibitors of pollen development in Arabidopsis thaliana, produced by Aspergillus terreus. Zeitschrift fur Naturforsch - sect C. J Biosci 57:459–464.  https://doi.org/10.1515/znc-2002-5-610 Google Scholar
  58. Smedsgaard J (1997) Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatogr A 760:264–270.  https://doi.org/10.1016/S0021-9673(96)00803-5 CrossRefPubMedGoogle Scholar
  59. Smith M, Madec S, Coton E, Hymery N (2016) Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 94:1–36.  https://doi.org/10.3390/toxins8040094 Google Scholar
  60. Speijers GJA, Speijers MHM (2004) Combined toxic effects of mycotoxins. Toxicol Lett 153:91–98.  https://doi.org/10.1016/j.toxlet.2004.04.046 CrossRefPubMedGoogle Scholar
  61. Stoev SD, Vitanov S, Anguelov G, Creppy EE (2001) Experimental mycotoxic nephropathy in pigs provoked by a diet containing ochratoxin A and penicillic acid. Vet Res Commun 25:205–223.  https://doi.org/10.1023/A:1006433709685 CrossRefPubMedGoogle Scholar
  62. Streit E, Schwab C, Sulyok M, Naehrer K, Krska R, Schatzmayr G (2013) Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 5:504–523.  https://doi.org/10.3390/toxins5030504 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Studer RO (1969) Synthesis and structure of fungisporin. Experientia 25:899.  https://doi.org/10.1007/BF01898048 CrossRefPubMedGoogle Scholar
  64. Studer-Rohr I, Dietrich DR, Schlatter J, Schlatter C (1995) The occurrence of ochratoxin-A in coffee. Food Chem Toxicol 33:341–355CrossRefPubMedGoogle Scholar
  65. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211–221.  https://doi.org/10.1007/s11306-007-0082-2 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tanenbaum SW, Nakajima S, Marx G (1969) The role of polyketides in secondary metabolite production by penicillia. Biotechnol Bioeng 11:1135–1156.  https://doi.org/10.1002/bit.260110610 CrossRefPubMedGoogle Scholar
  67. Tsuda Y, Kaneda M, Tada A, Nitta K, Yamamoto Y, Iitaka Y (1978) Aspterric acid, a new sesquiterpenoid of the carotane group, a metabolite from Aspergillus terreus IFO-6123. X-ray crystal and molecular structure of its p-bromobenzoate. J C S Chem Commun 160–161.  https://doi.org/10.1039/c39780000160
  68. Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5:1–15.  https://doi.org/10.3389/fmicb.2014.00656 CrossRefGoogle Scholar
  69. Urbano GR, Taniwaki MH, Vicentini MC (2001) Occurrence of ochratoxin A—producing fungi in raw Brazilian coffee. J Food Prot 64:1226–1230.  https://doi.org/10.4315/0362-028x-64.8.1226 CrossRefPubMedGoogle Scholar
  70. Vinokurova NG, Boichenko LV, Arinbasarov MU (2003) Production of alkaloids by fungi of the genus Penicillium grown on wheat grain. Appl Biochem Microbiol 39:457–460.  https://doi.org/10.1023/A:1024576703367 Google Scholar
  71. Vrabcheva T, Usleber E, Dietrich R, Märtlbauer E (2000) Co-occurrence of ochratoxin A and citrinin in cereals from bulgarian villages with a history of Balkan endemic nephropathy. J Agric Food Chem 48:2483–2488.  https://doi.org/10.1021/jf990891y CrossRefPubMedGoogle Scholar
  72. Wawrzyniak J, Waśkiewicz A (2014) Ochratoxin A and citrinin production by Penicillium verrucosum on cereal solid substrates. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31:139–148.  https://doi.org/10.1080/19440049.2013.861933 CrossRefPubMedGoogle Scholar
  73. Wickham H (2016) ggplot2: elegant graphics for data analysis, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  74. Winblad B, Fioravanti M, Dolezal T, Logina I, Milanov IG, Popescu DC, Solomon A (2008) Therapeutic use of nicergoline. Clin Drug Investig 28:533–552.  https://doi.org/10.1111/j.1365-2354.2008.00917.x CrossRefPubMedGoogle Scholar
  75. Wontner-smith TJ, Bruce DM, Cardwell SK, Armitage DM, Jennings P (2014) Ochratoxin A production during ambient-air drying. J Stored Prod Res 56:1–7.  https://doi.org/10.1016/j.jspr.2013.11.007 CrossRefGoogle Scholar
  76. Xu W, Gavia DJ, Tang Y (2014) Biosynthesis of fungal indole alkaloids. Nat Prod Rep 31:1474–1487.  https://doi.org/10.1039/c4np00073k CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yeulet SE, Mantl PG, Rudge MS, Greig JB (1988) Nephrotoxicity of Penicillium aurantiogriseum, a possible factor in the aetiology of Balkan Endemic Nephropathy. Mycopathologia 120:21–30.  https://doi.org/10.1007/bf00436248 CrossRefGoogle Scholar
  78. Zhi HX, Fang Y, Du L, Zhu T, Duan L, Chen J, Gu QQ, Zhu WM (2007) Aurantiomides A-C, quinazoline alkaloids from the sponge-derived fungus Penicillium aurantiogriseum SP0-19. J Nat Prod 70:853–855.  https://doi.org/10.1021/np060516h CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biotechnology and BiomedicineTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations