Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 17, pp 7417–7428 | Cite as

Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068

  • Tatiana G. Volova
  • Svetlana V. Prudnikova
  • Aleksey G. Sukovatyi
  • Ekaterina I. Shishatskaya
Biotechnological products and process engineering

Abstract

A strain of acetic acid bacteria, Komagataeibacter xylinus B-12068, was studied as a source for bacterial cellulose (BC) production. The effects of cultivation conditions (carbon sources, temperature, and pH) on BC production and properties were studied in surface and submerged cultures. Glucose was found to be the best substrate for BC production among the sugars tested; ethanol concentration of 3% (w/v) enhanced the productivity of BC. Optimization of medium and cultivation conditions ensures a high production of BC on glucose and glycerol, up to 2.4 and 3.3 g/L/day, respectively. C/N elemental analysis, emission spectrometry, SEM, DTA, and X-ray were used to investigate the structure and physical and mechanical properties of the BC produced under different conditions. MTT assay and SEM showed that native cellulose membrane did not cause cytotoxicity upon direct contact with NIH 3T3 mouse fibroblast cells and was highly biocompatible.

Keywords

Bacterial cellulose Growth conditions Komagataeibacter xylinus 

Notes

Acknowledgements

Surface of the samples was investigated using a scanning electron microscope Hitachi S-5500 in the center of the common use of Krasnoyarsk Scientific Center of Siberian Branch of Russian Academy of Sciences.

Funding information

This study was funded by the Russian Foundation for Basic Research and Government of Krasnoyarsk Territory (project registration no. 16-43-242024) and the Russian Academy of Sciences (project registration no. 01201351505).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals, performed by any of the authors.

References

  1. Aytekin AÖ, Demirbağ DD, Bayrakdar T (2016) The statistical optimization of bacterial cellulose production via semi-continuous operation mode. J Industr Engin Chem 37:243–250.  https://doi.org/10.1016/j.jiec.2016.03.030 CrossRefGoogle Scholar
  2. Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose-phosphate composite membranes. J Therm Anal Calorim 87:815–818.  https://doi.org/10.1007/s10973-006-8170-5 CrossRefGoogle Scholar
  3. Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJ (2011) Bacterial cellulose/poly (3-hydroxybutyrate) composite membranes. Carbohydr Polym 83:1279–1284.  https://doi.org/10.1016/j.carbpol.2010.09.049 CrossRefGoogle Scholar
  4. Belosinschi D, Tofanica B-M (2018) A new bio-material with 3D lightweight network for energy and advanced applications. Cellulose 25:897–902.  https://doi.org/10.1007/s10570-018-1652-3 CrossRefGoogle Scholar
  5. Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102.  https://doi.org/10.1016/j.carbpol.2010.10.072 CrossRefGoogle Scholar
  6. Castro C, Zuluaga R, Álvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037.  https://doi.org/10.1016/j.carbpol.2012.03.045 CrossRefPubMedGoogle Scholar
  7. Culebras M, Grande CJ, Torres FG, Troncoso OP, Gomez CM, Bañó MC (2015) Optimization of cell growth on bacterial cellulose by adsorption of collagen and poly-L-lysine. Int J Polymer Mater 64:411–415.  https://doi.org/10.1080/00914037.2014.958829 CrossRefGoogle Scholar
  8. Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D, Marzotto M (2005) Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Micr 55:2365–2370.  https://doi.org/10.1099/ijs.0.63301-0 CrossRefGoogle Scholar
  9. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442.  https://doi.org/10.1016/j.carbpol.2012.10.071 CrossRefPubMedGoogle Scholar
  10. Garrity G, Staley JT, Boone DR, De Vos P, Goodfellow M, Rainey FA, Schleifer KH (2006) In: Brenner DJ, Krieg NR (eds) Bergey’s manual® of systematic bacteriology. Volume two: the proteobacteria. Springer-Verlag, New YorkGoogle Scholar
  11. Gullo M, Sola A, Zanichelli G, Montorsi M, Messori M, Giudici P (2017) Increased production of bacterial cellulose as starting point for scaled-up applications. Appl Microbiol Biotechnol 101:8115–8127.  https://doi.org/10.1007/s00253-017-8539-3 CrossRefPubMedGoogle Scholar
  12. He M, Chen H, Zhang X, Wang C, Xu C, Xue Y, Wang J, Zhou P, Zhao Q (2018) Construction of novel cellulose/chitosan composite hydrogels and films and their applications. Cellulose 25:1987–1996.  https://doi.org/10.1007/s10570-018-1683-9 CrossRefGoogle Scholar
  13. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352 PMCID: PMC1269899CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huang C, Guo HJ, Xiong L, Wang B, Shi SL, Chen XF, Lin XQ, Wang C, Luo J, Chen XD (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 136:198–202.  https://doi.org/10.1016/j.carbpol.2015.09.043 CrossRefPubMedGoogle Scholar
  15. Hungund BS, Gupta SG (2013) Strain improvement of Gluconacetobacter xylinus NCIM 2526 for bacterial cellulose production. Afr J Biotechnol 9:5170–5172 http://www.ajol.info/index.php/ajb/article/download/92146/81586 Google Scholar
  16. Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:1–10.  https://doi.org/10.4172/2155-9821.1000150 CrossRefGoogle Scholar
  17. Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119.  https://doi.org/10.1016/j.carbpol.2014.11.061 CrossRefPubMedGoogle Scholar
  18. Lima HLS, Nascimento ES, Andrade FK, Brígida AIS, Borges MF, Cassales AR, Muniz CR, de SM Souza Filho M, JPS M, de F Rosa M (2017) Bacterial cellulose production by Komagataeibacter hansenii ATCC 23769 using sisal juice. Braz J Chem Eng 34(3):671–680.  https://doi.org/10.1590/0104-6632.20170343s20150514 CrossRefGoogle Scholar
  19. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611.  https://doi.org/10.1016/j.carbpol.2013.01.076 CrossRefPubMedGoogle Scholar
  20. Ma X, Wang RM, Guan FM, Wang TF (2010) Artificial dura mater made from bacterial cellulose and polyvinyl alcohol. CN Patent ZL2007100155375
  21. Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523.  https://doi.org/10.1016/j.carbpol.2014.10.008 CrossRefPubMedGoogle Scholar
  22. Pa’e N, Zahan KA, Muhamad II (2011) Production of biopolymer from Acetobacter xylinum using different fermentation methods. Int J Eng Technol 11:90–98Google Scholar
  23. Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25:2055–2059.  https://doi.org/10.1023/B:BILE.0000007065.63682.18 CrossRefPubMedGoogle Scholar
  24. Pokalwar SU, Mishra MK, Manwar AV (2010) Production of cellulose by Gluconacetobacter sp. Recent Res Sci Technol 2:14–19Google Scholar
  25. Prudnikova SV, Shidlovsky IP (2017) The new strain of acetic acid bacteria Komagataeibacter xylinus B-12068—producer of bacterial cellulose for biomedical applications. J Sib Fed Univ Biol 10(2):246–254CrossRefGoogle Scholar
  26. Prudnikova SV, Volova TG, Shishatskaya EI, Shtamm bakterii Komagataeibacter xylinus—produtsent bakterialnoi tsellulozy (A strain of bacterium Komagataeibacter xylinus—a producer of bacterial cellulose). RF Patent for an invention No. 2568605. Priority of 11 December 2014. Registered in the RF State Register on 27 October 2015 (in Russian)Google Scholar
  27. Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89:613–622.  https://doi.org/10.1016/j.carbpol.2012.03.059 CrossRefPubMedGoogle Scholar
  28. Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:1–8. Article ID 175362.  https://doi.org/10.1155/2011/175362 CrossRefGoogle Scholar
  29. Saxena IM, Brown RM (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21.  https://doi.org/10.1093/aob/mci155 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiol 11:123–129.  https://doi.org/10.1099/00221287-11-1-123 CrossRefGoogle Scholar
  31. Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885.  https://doi.org/10.1007/s10570-008-9264-y CrossRefGoogle Scholar
  32. Surma-Ślusarska B, Presler S, Danielewicz D (2008) Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibers Textiles Eastern Europe 4:108–111Google Scholar
  33. Tabaii MJ, Emtiazi G (2016) Comparison of bacterial cellulose production among different strains and fermented media. Appl Food Biotechnol 3:35–41.  https://doi.org/10.22037/afb.v3i1.10582 CrossRefGoogle Scholar
  34. Tanaka M, Murakami S, Shinke R, Aoki K (2000) Genetic characteristics of cellulose-forming acetic acid bacteria identified phenotypically as Gluconacetobacter xylinus. Biosci Biotechnol Biochem 644:757–760.  https://doi.org/10.1271/bbb.64.757 CrossRefGoogle Scholar
  35. Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112:71–80.  https://doi.org/10.1016/j.jclepro.2015.07.054 CrossRefGoogle Scholar
  36. Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554.  https://doi.org/10.1007/s10924-012-0541-3 CrossRefGoogle Scholar
  37. Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikovn SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Xuân Bùi B, Việt DV, II G (2010) Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 95(12):2350–2359.  https://doi.org/10.1016/j.polymdegradstab.2010.08.023 CrossRefGoogle Scholar
  38. Wang S-S, Han Y-H, Yec Y-X, Shic X-X, Xiang P, Li D-LCM (2017) Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production. RSC Adv 7:45145–45155.  https://doi.org/10.1039/C7RA08391B CrossRefGoogle Scholar
  39. Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404.  https://doi.org/10.2323/jgam.58.397 CrossRefPubMedGoogle Scholar
  40. Yamanaka S, Sugiyama J (2000) Structural modification of bacterial cellulose. Cellulose 7(3):213–225.  https://doi.org/10.1023/A:1009208022957 CrossRefGoogle Scholar
  41. Zhang H, Xu X, Chen X, Yuan F, Sun B, Xu Y, Yang J, Sun D (2017) Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01. Sci Rep 7(4431):4431.  https://doi.org/10.1038/s41598-017-04589-6
  42. Zhijiang C, Guang Y, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly (3-hydroxybutyrate). Curr Appl Phys 11:247–249.  https://doi.org/10.1016/j.cap.2010.07.016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tatiana G. Volova
    • 1
    • 2
  • Svetlana V. Prudnikova
    • 1
  • Aleksey G. Sukovatyi
    • 1
    • 2
  • Ekaterina I. Shishatskaya
    • 1
    • 2
  1. 1.Siberian Federal UniversityKrasnoyarskRussian Federation
  2. 2.Institute of Biophysics SB RASSiberian Federal UniversityKrasnoyarskRussian Federation

Personalised recommendations