Applied Microbiology and Biotechnology

, Volume 102, Issue 18, pp 7963–7979 | Cite as

Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate is plasmid encoded in Aminobacter sp. MSH1

  • Jeroen T’Syen
  • Bart Raes
  • Benjamin Horemans
  • Raffaella Tassoni
  • Baptiste Leroy
  • Cédric Lood
  • Vera van Noort
  • Rob Lavigne
  • Ruddy Wattiez
  • Hans-Peter E. Kohler
  • Dirk SpringaelEmail author
Applied genetics and molecular biotechnology


Aminobacter sp. MSH1 uses the groundwater micropollutant 2,6-dichlorobenzamide (BAM) as sole source of carbon and energy. In the first step, MSH1 converts BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) by means of the BbdA amidase encoded on the IncP-1β plasmid pBAM1. Information about the genes and degradation steps involved in 2,6-DCBA metabolism in MSH1 or any other organism is currently lacking. Here, we show that the genes for 2,6-DCBA degradation in strain MSH1 reside on a second catabolic plasmid in MSH1, designated as pBAM2. The complete sequence of pBAM2 was determined revealing that it is a 53.9 kb repABC family plasmid. The 2,6-DCBA catabolic genes on pBAM2 are organized in two main clusters bordered by IS elements and integrase genes and encode putative functions like Rieske mono-/dioxygenase, meta-cleavage dioxygenase, and reductive dehalogenases. The putative mono-oxygenase encoded by the bbdD gene was shown to convert 2,6-DCBA to 3-hydroxy-2,6-dichlorobenzoate (3-OH-2,6-DCBA). 3-OH-DCBA was degraded by wild-type MSH1 and not by a pBAM2-free MSH1 variant indicating that it is a likely intermediate in the pBAM2-encoded DCBA catabolic pathway. Based on the activity of BbdD and the putative functions of the other catabolic genes on pBAM2, a metabolic pathway for BAM/2,6-DCBA in strain MSH1 was suggested.


2,6-Dichlorobenzamide Catabolic pathway Plasmid encoded Aminobacter Drinking water treatment 



The authors thank J. Aamand for providing strains MSH1, ASI1, and ASI2; Dianne K. Newman for providing E. coli BW29427, A. Provoost for skillful help in plasmid isolation, M. Everaert for lyophilization, T. Fleischmann and I. Schilling for helping with HPLC-MS and identification of 3-OH-2,6-DCBA, and J. Cornelis for technical assistance.


This work was supported by IWT-Vlaanderen Strategic Basic Research project [grant number 101589], the Inter-University Attraction Pole (IUAP) “μ-manager” of the Belgian Science Policy (BELSPO) [grant number P7/25], EU project BIOTREAT [EU grant number 266039] and by the FNRS under grant “grand equipment” [grant number2877824]. CL was supported by an SB PhD fellowship [grant number 1S64718N] and BH by a postdoctoral fellowship [grant number12Q0218N] from FWO Vlaanderen.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9189_MOESM1_ESM.pdf (411 kb)
ESM 1 (PDF 411 kb)


  1. Abraham W-R, Wenderoth DF, Gläßer W (2005) Diversity of biphenyl degraders in a chlorobenzene polluted aquifer. Chemosphere 58(4):529–533. PubMedCrossRefGoogle Scholar
  2. Abu-Omar M, Loaiza A, Hontzeas N (2005) Reaction mechanisms of mononuclear non-heme iron oxygenases. Chem Rev 105(6):2227–2252PubMedCrossRefGoogle Scholar
  3. Albers CN, Jacobsen OS, Aamand J (2013) Using 2,6-dichlorobenzamide (BAM) degrading Aminobacter sp. MSH1 in flow through biofilters—initial adhesion and BAM degradation potentials. Appl Microbiol Biotechnol 98(2):957–967. PubMedCrossRefGoogle Scholar
  4. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44(W1):W16–W21. PubMedPubMedCentralCrossRefGoogle Scholar
  5. Basta T, Keck A, Klein J, Stolz A (2004) Detection and characterization of conjugative degradative plasmids in xenobiotic-segrading Sphingomonas strains. J Bacteriol 186(12):3862–3872. PubMedPubMedCentralCrossRefGoogle Scholar
  6. Benner J, Helbling DE, Kohler H-PE, Wittebol J, Kaiser E, Prasse C, Ternes TA, Albers CN, Aamand J, Horemans B, Springael D, Walravens E, Boon N (2013) Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Res 47(16):5955–5976. PubMedCrossRefGoogle Scholar
  7. Bertani G (1951) Studies on lysogenesis I.: the mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62(3):293–300PubMedPubMedCentralGoogle Scholar
  8. Bertoni G, Martino M, Galli E, Barbieri P (1998) Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol 64(10):3626–3632PubMedPubMedCentralGoogle Scholar
  9. Castillo-Ramírez S, Vázquez-Castellanos JF, González V, Cevallos MA (2009) Horizontal gene transfer and diverse functional constrains within a common replication-partitioning system in Alphaproteobacteria: the repABC operon. BMC Genomics 10:536. PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cevallos MA, Cervantes-Rivera R, Gutiérrez-Ríos RM (2008) The repABC plasmid family. Plasmid 60(1):19–37. PubMedCrossRefGoogle Scholar
  11. Chatterjee DK, Kellogg ST, Hamada S, Chakrabarty AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J Bacteriol 146(2):639–646PubMedPubMedCentralGoogle Scholar
  12. Chen H, Chow M, Liu C, Lau A, Liu J, Eltis L (2012) Vanillin catabolism in Rhodococcus jostii RHA1. Appl Environ Microbiol 78(2):586–588. PubMedPubMedCentralCrossRefGoogle Scholar
  13. Clausen L, Larsen F, Albrechtsen H-J (2004) Sorption of the herbicide dichlobenil and the metabolite 2,6-dichlorobenzamide on soils and aquifer sediments. Environ Sci Technol 38(17):4510–4518. PubMedCrossRefGoogle Scholar
  14. Clement P, Pieper D, Gonzalez B (2001) Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. Microbiology 147:2141–2148. PubMedCrossRefGoogle Scholar
  15. Cox M, Peterson D, Biggs P (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485. PubMedPubMedCentralCrossRefGoogle Scholar
  16. Crossman LC, Castillo-Ramírez S, McAnnula C, Lozano L, Vernikos GS, Acosta JL, Ghazoui ZF, Hernández-González I, Meakin G, Walker AW, Hynes MF, Young JPW, Downie JA, Romero D, Johnston AWB, Dávila G, Parkhill J, González V (2008) A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria. PLoS One 3(7):e2567. PubMedPubMedCentralCrossRefGoogle Scholar
  17. D’Argenio V, Notomista E, Petrillo M, Cantiello P, Cafaro V, Izzo V, Naso B, Cozzuto L, Durante L, Troncone L, Paolella G, Salvatore F, Di Donato A (2014) Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern. BMC Genomics 15:384. PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, Höfte M, De Vos P, Verstraete W, Top EM (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69(3):1532–1541PubMedPubMedCentralCrossRefGoogle Scholar
  19. Eisen JA (2000) Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev 10(6):606–611. PubMedCrossRefGoogle Scholar
  20. Ferraro D, Galhar L, Ramaswamy S (2005) Rieske business: structure–function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 338(1):175–190. PubMedCrossRefGoogle Scholar
  21. Francisco N, Suzuki K, Miyashita KP, Ogawa (2001) The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. Microbiology 147(1):121–133. PubMedCrossRefGoogle Scholar
  22. Gao J, Ellis L, Wackett L (2011) The University of Minnesota pathway prediction system: multi-level prediction and visualization. Nucleic Acids Res 39:W406–W411. PubMedPubMedCentralCrossRefGoogle Scholar
  23. García-de los Santos A, Brom S, Romero D (1996) Rhizobium plasmids in bacteria-legume interactions. World J Microbiol Biotechnol 12(2):119–125. PubMedCrossRefGoogle Scholar
  24. Ghosal D, You IS, Chatterjee DK, Chakrabarty AM (1985) Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Proc Natl Acad Sci U S A 82:1638–1642PubMedPubMedCentralCrossRefGoogle Scholar
  25. González V, Santamaría R, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga S, Ramírez M, Jiménez-Jacinto V, Collado-Vides J (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103(10):3834–3839. PubMedPubMedCentralCrossRefGoogle Scholar
  26. Guindon S, Lethiec F, Duroux F, Gaccuel O (2005) PHYML online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33(2):W557–W559PubMedPubMedCentralCrossRefGoogle Scholar
  27. Haak B, Fetzner S, Lingens F (1995) Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS. J Bacteriol 177(3):667–675PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hartmann W, Knackmuss HJ, Reineke J (1979) Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol 37(3):421–428PubMedPubMedCentralGoogle Scholar
  29. Helbling DE (2015) Bioremediation of pesticide-contaminated water resources: the challenge of low concentrations. Curr Opin Biotechnol 33:142–148. PubMedCrossRefGoogle Scholar
  30. Hickey WJ, Focht DD (1990) Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl Environ Microbiol 56(12):3842–3850PubMedPubMedCentralGoogle Scholar
  31. Hickey WJ, Sabat G, Yuroff AS, Arment AR, Pérez-Lesher J (2001) Cloning, nucleotide sequencing, and functional analysis of a novel, mobile cluster of biodegradation genes from Pseudomonas aeruginosa strain JB2. Appl Environ Microbiol 67(10):4603–4609. PubMedPubMedCentralCrossRefGoogle Scholar
  32. Holtze MS, Hansen HCB, Juhler RK, Sørensen J, Aamand J (2007) Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure. Environ Pollut 148(1):343–351. PubMedCrossRefGoogle Scholar
  33. Jin S (2010) Evidence of mobility in the 3-chlorobenzoate degradative genes in a pristine soil isolate, Burkholderia phytofirmans OLGA172. University of Toronto, CanadaGoogle Scholar
  34. Karunakaran R, Mauchline TH, Hosie AHF, Poole PS (2005) A family of promoter probe vectors incorporating autofluorescent and chromogenic reporter proteins for studying gene expression in gram-negative bacteria. Microbiology 151(10):3249–3256. PubMedCrossRefGoogle Scholar
  35. Keil U, Lingens FH, Klages (1981) Degradation of 4-chlorobenzoate by Pseudomonas sp. CBS3: Induction of catabolic enzymes. FEMS Microbiol Lett 10(2):213–215. CrossRefGoogle Scholar
  36. Klemba M, Jakobs B, Wittich R-M, Pieper D (2000) Chromosomal integration of tcb chlorocatechol degradation pathway genes as a means of expanding the growth substrate range of bacteria to include haloaromatics. Appl Environ Microbiol 66(8):3255–3261. PubMedPubMedCentralCrossRefGoogle Scholar
  37. Koudelakova T, Bidmanova S, Dvorak P, Pavelka A, Chaloupkova R, Prokop Z, Damborsky J (2013) Haloalkane dehalogenases: biotechnological applications. Biotechnol J 8(1):32–45. PubMedCrossRefGoogle Scholar
  38. Larsen M, Guss A, Metcalf WW (2002) Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 178(3):193–201. PubMedCrossRefGoogle Scholar
  39. Lawrence J, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44(4):383–397. PubMedCrossRefGoogle Scholar
  40. Layton J, Wallace W, Corcoran C, Sayler GSAC (1992) Evidence for 4-chlorobenzoic acid dehalogenation mediated by plasmids related to pSS50. Appl Environ Microbiol 58(1):399–402PubMedPubMedCentralGoogle Scholar
  41. Li H, Durbin R (2010) Fast and accurate long-read alignment with burrows wheeler transform. Bioinformatics 26(5):589–595. PubMedPubMedCentralCrossRefGoogle Scholar
  42. Li P-L, Hwang I, Miyagi H, True H, Farrand SK (1999) Essential components of the Ti plasmid trb system, a Type IV macromolecular transporter. J Bacteriol 181(16):5033–5041PubMedPubMedCentralGoogle Scholar
  43. Locher H, Leisinger T, Cook A (1991) 4-toluene sulfonate methyl-monooxygenase from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol 173(12):3741–3748. PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lukashin M, Borodovsky A (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115. PubMedPubMedCentralCrossRefGoogle Scholar
  45. Luo B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu S-M, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T-W, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18. PubMedPubMedCentralCrossRefGoogle Scholar
  46. Martinez B, Tomkins J, Wackett L, Wing R, Sadowsky M (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183(19):5684–5677. PubMedPubMedCentralCrossRefGoogle Scholar
  47. Mulligan C, Fischer M, Thomas G (2011) Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 35(1):68–86. PubMedCrossRefGoogle Scholar
  48. Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M (2007) Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76(4):741–752. PubMedCrossRefGoogle Scholar
  49. Nakatsu CH, Straus NA, Wyndham RC (1995) The nucleotide sequence of the Tn5271 3-chlorobenzoate 3, 4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 141:485–495. PubMedCrossRefGoogle Scholar
  50. Overbeek R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. PubMedCrossRefGoogle Scholar
  51. Petersen J, Brinkmann H, Pradella S (2009) Diversity and evolution of repABC type plasmids in Rhodobacterales. Environ Microbiol 11:2627–2638. PubMedCrossRefGoogle Scholar
  52. Pieper D (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67(2):170–191. PubMedCrossRefGoogle Scholar
  53. Pieper D, Knackmuss H-J, Timmis KN (1993) Accumulation of 2-chloromuconate during metabolism of 3-chlorobenzoate by Alcaligenes eutrophus JMP134. Appl Microbiol Biotechnol 39(4–5):563–567. CrossRefGoogle Scholar
  54. Prieto MA, Garcia JL (1994) Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme. J Biol Chem 269(36):22823–22829PubMedGoogle Scholar
  55. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49(1):1–7PubMedPubMedCentralGoogle Scholar
  56. Ricker H, Qian H, Fulthorpe R (2013) Phylogeny and organization of recombinase in trio (RIT) elements. Plasmid 70(2):226–239. PubMedCrossRefGoogle Scholar
  57. Riefert H, Rabenhorst J, Steinbüchel A (1997) Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol 179(8):2595–2607. CrossRefGoogle Scholar
  58. Romanov V, Hausinger RP (1994) Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro- and 2-chlorobenzoate. J Bacteriol 176(11):3368–3374. PubMedPubMedCentralCrossRefGoogle Scholar
  59. Rousseaux S, Soulas G, Hartmann A (2002) Plasmid localisation of atrazine-degrading genes in newly described Chelatobacter and Arthrobacter strains. FEMS Microbiol Ecol 41(1):69–75. PubMedCrossRefGoogle Scholar
  60. Schuler L, Jouanneau Y, Ni Chadhain S, Meyer C, Pouli M, Zylstra G, Hols P, Agathos S (2009) Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl Microbiol Biotechnol 83(3):465–475. PubMedCrossRefGoogle Scholar
  61. Seyedsayamdost M, Case R, Kolter R, Clardy J (2011) The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem 3(4):331–335. PubMedPubMedCentralCrossRefGoogle Scholar
  62. Sievers F, Higgins DG (2014) Clustal omega. Curr Protoc Bioinformatics 48(1):3.13.1–3.13.16. CrossRefGoogle Scholar
  63. Simonsen A (2010) Physiological characterisation of bacteria degrading dichlobenil and linuron herbicides. 2010. PhD thesis university of KopenhagenGoogle Scholar
  64. Simonsen A, Holtze MS, Sørensen SR, Sørensen SJ, Aamand J (2006) Mineralisation of 2,6-dichlorobenzamide (BAM) in dichlobenil-exposed soils and isolation of a BAM-mineralising Aminobacter sp. Environ Pollut 144(1):289–295. PubMedCrossRefGoogle Scholar
  65. Simonsen A, Badawi N, Anskjær G, Albers C, Sørensen S, Sørensen J, Aamand J (2012) Intermediate accumulation of metabolites results in a bottleneck for mineralisation of the herbicide metabolite 2,6-dichlorobenzamide (BAM) by Aminobacter spp. Appl Microbiol Biotechnol 94(1):237–245. PubMedCrossRefGoogle Scholar
  66. Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I, Otten L, Suen G, Welch R, Almeida NF, Arnold F, Burton OT, Du Z, Ewing A, Godsy E, Heisel S, Houmiel KL, Jhaveri J, Lu J, Miller NM, Norton S, Chen Q, Phoolcharoen W, Ohlin V, Ondrusek D, Pride N, Stricklin SL, Sun J, Wheeler C, Wilson L, Zhu H, Wood DW (2009) Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191(8):2501–2511. PubMedPubMedCentralCrossRefGoogle Scholar
  67. Solyanikova IP, Emelyanova EV, Shumkova ES, Egorova DO, Korsakova ES, Plotnikova EG, Golovleva LA (2015) Peculiarities of the degradation of benzoate and its chloro- and hydroxy-substituted analogs by actinobacteria. Int Biodeterior Biodegrad 100:155–164. CrossRefGoogle Scholar
  68. Sørensen SR, Holtze MS, Simonsen A, Aamand J (2007) Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2,6-dichlorobenzamide by Aminobacter spp. isolated from dichlobenil-treated soils. Appl Environ Microbiol 73(2):399–406. PubMedCrossRefGoogle Scholar
  69. Springael D, Ryngaert A, Merlin C, Toussaint A, Mergeay M (2001) Occurrence of Tn4371-related mobile elements and sequences in (chloro)biphenyl-degrading bacteria. Appl Environ Microbiol 67(1):42–50. PubMedPubMedCentralCrossRefGoogle Scholar
  70. Starkenburg SR, Larimer FW, Stein LY, Klotz MG, Chain PSG, Sayavedra-Soto LA, Poret-Peterson AT, Gentry ME, Arp DJ, Ward B, Bottomley PJ (2008) Complete genome sequence of Nitrobacter hamburgensis X14 and comparative genomic analysis of species within the genus Nitrobacter. Appl Environ Microbiol 74(9):2852–2863. PubMedPubMedCentralCrossRefGoogle Scholar
  71. Suzuki K, Ogawa N, Miyashita K (2001) Expression of 2-halobenzoate dioxygenase genes (cbdSABC) involved in the degradation of benzoate and 2-halobenzoate in Burkholderia sp. TH2. Gene 262(1–2):137–145. PubMedCrossRefGoogle Scholar
  72. T’Syen J, Tassoni R, Hansen L, Sorensen SJ, Leroy B, Sekhar A, Wattiez R, De Mot R, Springael D (2015) Identification of the amidase BbdA that initiates biodegradation of the groundwater micropollutant 2,6-dichlorobenzamide (BAM) in Aminobacter sp. MSH1. Environ Sci Technol 49(19):11703–11713. PubMedCrossRefGoogle Scholar
  73. Tabata S, Hooykaas P, Oka A (1989) Sequence determination and characterization of the replicator region in the tumor-inducing plasmid pTiB6S3. J Bacteriol 171(3):1665–1672. PubMedPubMedCentralCrossRefGoogle Scholar
  74. Tabata M, Endo R, Ito M, Ohtsubo Y, Kumar A, Tsuda M, Nagata Y (2011) The lin genes for γ-hexachlorocyclohexane degradation in Sphingomonas sp. MM-1 proved to be dispersed across multiple plasmids. Biosci Biotechnol Biochem 75(3):466–472. PubMedCrossRefGoogle Scholar
  75. Tabata M, Ohhata S, Nikawadori Y, Kishida K, Sato T, Kawasumi T, Kato H, Ohtsubo Y, Tsuda M, Nagata Y (2016) Comparison of the complete genome sequences of four γ-hexachlorocyclohexane-degrading bacterial strains: insights into the evolution of bacteria able to degrade a recalcitrant man-made pesticide. DNA Res 23(6):581–599. PubMedPubMedCentralCrossRefGoogle Scholar
  76. Top EM, Springael D, Boon N (2002) Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 42(2):199–208. PubMedCrossRefGoogle Scholar
  77. Topp E, Zhu H, Nour SM, Houot S, Lewis M, Cuppels D (2000) Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. Appl Environ Microbiol 66(7):2773–2782. PubMedPubMedCentralCrossRefGoogle Scholar
  78. Tralau T, Cook A, Ruff J (2001) Map of the IncP1β plasmid pTSA encoding the widespread genes (tsa) for p-toluenesulfonate degradation in Comamonas testosteroni T-2. Appl Environ Microbiol 67:1508–1516. PubMedPubMedCentralCrossRefGoogle Scholar
  79. Tsoi TV, Plotnikova EG, Cole JR, Guerin WF, Bagdasarian M, Tiedje JM (1999) Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Appl Environ Microbiol 65(5):2151–2162PubMedPubMedCentralGoogle Scholar
  80. Vrchotova B, Macková M, Macek T, Demnerová K (2013) Bioremediation of chlorobenzoic acids. In: Patil YB, Rao P (eds) Applied bioremediation - active and passive approaches. InTech, Rijeka, pp 3–32Google Scholar
  81. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6):e1005595. PubMedPubMedCentralCrossRefGoogle Scholar
  82. Young J, Crossman L, Johnston A, Thomson N, Ghazoui Z, Hull K, Wexler M, Curson A, Todd J, Poole P (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jeroen T’Syen
    • 1
  • Bart Raes
    • 1
  • Benjamin Horemans
    • 1
  • Raffaella Tassoni
    • 1
  • Baptiste Leroy
    • 2
  • Cédric Lood
    • 3
    • 4
  • Vera van Noort
    • 3
  • Rob Lavigne
    • 4
  • Ruddy Wattiez
    • 2
  • Hans-Peter E. Kohler
    • 5
  • Dirk Springael
    • 1
    Email author
  1. 1.Division of Soil and Water ManagementKU LeuvenLeuvenBelgium
  2. 2.Department of Proteomics and Microbiology, Research Institute for BiosciencesUniversity of MonsMonsBelgium
  3. 3.Centre of Microbial and Plant Genetics, Department of Microbial and Molecular SystemsKU LeuvenLeuvenBelgium
  4. 4.Laboratory of Gene TechnologyKU LeuvenLeuvenBelgium
  5. 5.Department of Environmental MicrobiologySwiss Federal Institute of Aquatic Science and Technology (EAWAG)DübendorfSwitzerland

Personalised recommendations