Applied Microbiology and Biotechnology

, Volume 102, Issue 15, pp 6659–6672 | Cite as

Nerol-induced apoptosis associated with the generation of ROS and Ca2+ overload in saprotrophic fungus Aspergillus flavus

  • Jun TianEmail author
  • Yeyun Gan
  • Chao Pan
  • Man Zhang
  • Xueyan Wang
  • Xudong TangEmail author
  • Xue PengEmail author
Applied microbial and cell physiology


The contamination of food with Aspergillus flavus and subsequent aflatoxins is one of the most serious safety problems in the world. In this study of nerol (NEL)’s antifungal mechanism of action, we observed morphological and physiological changes in Aspergillus flavus. We found that NEL resulted in elevated levels of reactive oxygen species (ROS) and calcium ions (Ca2+). On ROS assays, compared with the controls, the proportion of fluorescent cells treated with concentrations of 0.25, 0.5, 1, and 2 μL/mL NEL increased to 8.4 ± 1.07%, 10.2 ± 1.72%, 13.4 ± 0.50%, and 26.2 ± 4.21%, respectively. Increased mitochondrial dysfunction and oxidative stress induced by the interactions between Ca2+ and ROS subsequently activate the release of cytochrome c and caspase activity. Characteristic changes of apoptosis were also observed via various detection methods, including phosphatidylserine externalization, nuclear condensation, and DNA fragmentation. Meanwhile, we found that the expression of CaMKs increased significantly in NEL-treated cells. In conclusion, our findings indicate that NEL has great potential as an eco-friendly antifungal agent for food preservation.


NEL A. flavus Antifungal Calcium Reactive oxygen species Apoptosis 



This study was funded by National Natural Science Foundation of China (31671944, 31570028), Six Talent Peaks Project of Jiangsu Province (SWYY-026), Qing Lan Project of Jiangsu Province, Natural Science Foundation by Xuzhou City (KC17053), the Industry-University-Academy Prospective Joint Research Project of Jiangsu Province (BY2016028-01), Jiangsu Science and Technology Agency Project (BK20141148), and the PAPD of Jiangsu Higher Education Institutions.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Adrain C, Martin SJ (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Tr Biochem Sci 26(6):390–397. CrossRefGoogle Scholar
  2. Alonso-Monge R, Carvaihlo S, Nombela C, Rial E, Pla J (2009) The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. Microbiol-SGM 155(Pt 2):413–423. CrossRefGoogle Scholar
  3. Bond R, Ly N, Cyert MS (2017) The unique C terminus of the calcineurin isoform CNAbeta1 confers non-canonical regulation of enzyme activity by Ca2+ and calmodulin. J Biol Chem 292(40):16709–16721. CrossRefPubMedGoogle Scholar
  4. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253. CrossRefPubMedGoogle Scholar
  5. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2006) Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol-Cell Ph 291(5):C1082–C1088. CrossRefGoogle Scholar
  6. Canciani E, Dellavia C, Marazzi MG, Augusti D, Carmagnola D, Vianello E, Canullo L, Galliera E (2017) RNA isolation from alveolar bone and gene expression analysis of RANK, RANKL and OPG: a new tool to monitor bone remodeling and healing in different bone substitutes used for prosthetic rehabilitation. Arch Oral Biol 80:56–61. CrossRefPubMedGoogle Scholar
  7. Chen SJ, Xu YJ, Xu BS, Guo M, Zhang Z, Liu L, Ma HW, Chen Z, Luo Y, Huang SL, Chen L (2011) CaMKII is involved in cadmium activation of MAPK and mTOR pathways leading to neuronal cell death. J Neurochem 119(5):1108–1118. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Daniel B, DeCoster MA (2004) Quantification of sPLA2-induced early and late apoptosis changes in neuronal cell cultures using combined TUNEL and DAPI staining. Brain Res Protocol 13(3):144–150. CrossRefGoogle Scholar
  9. de Castro PA, Savoldi M, Bonatto D, Barros MH, Goldman MH, Berretta AA, Goldman GH (2011) Molecular characterization of propolis-induced cell death in Saccharomyces cerevisiae. Eukaryot Cell 10(3):398–411. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Delgado J, Owens RA, Doyle S, Asensio MA, Nunez F (2015) Impact of the antifungal protein PgAFP from Penicillium chrysogenum on the protein profile in Aspergillus flavus. Appl Microbiol Biotechnol 99(20):8701–8715. CrossRefPubMedGoogle Scholar
  11. Demyttenaere JCR, Herrera MD, De Kimpe N (2000) Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Phytochemistry 55(4):363–373. CrossRefPubMedGoogle Scholar
  12. Duan XF, OuYang QL, Tao NG (2018) Effect of applying cinnamaldehyde incorporated in wax on green mould decay in citrus fruits. J Sci Food Agr 98(2):527–533. CrossRefGoogle Scholar
  13. Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci-Landmrk 14:1197–1218. CrossRefGoogle Scholar
  14. Ferreira P, Cardoso T, Ferreira F, Fernandes-Ferreira M, Piper P, Sousa MJ (2014) Mentha piperita essential oil induces apoptosis in yeast associated with both cytosolic and mitochondrial ROS-mediated damage. FEMS Yeast Res 14(7):1006–1014. PubMedCrossRefGoogle Scholar
  15. Fujita KI, Tatsumi M, Ogita A, Kubo I, Tanaka T (2014) Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae. FEBS J 281(4):1304–1313. CrossRefPubMedGoogle Scholar
  16. Garcia-Prieto C, Ahmed KBR, Chen Z, Zhou Y, Hammoudi N, Kang Y, Lou CG, Mei Y, Jin ZD, Huang P (2013) Effective killing of leukemia cells by the natural product OSW-1 through disruption of cellular calcium homeostasis. J Biol Chem 288(5):3240–3250. CrossRefPubMedGoogle Scholar
  17. Gonzalez-Ramirez AE, Gonzalez-Trujano ME, Orozco-Suarez SA, Alvarado-Vasquez N, Lopez-Munoz FJ (2016) Nerol alleviates pathologic markers in the oxazolone-induced colitis model. Eur J Pharmacol 776:81–89. CrossRefPubMedGoogle Scholar
  18. Gottlieb E, Vander Heiden MG, Thompson CB (2000) Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 20(15):5680–5689. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gottlieb E, Armour SM, Harris MH, Thompson CB (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10(6):709–717. CrossRefPubMedGoogle Scholar
  20. Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ (2000) Metabolic stress and altered glucose transport—activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49(4):527–531.
  21. Heatwole VM (1999) TUNEL assay for apoptotic cells. Methods Mol Biol 115:141–148. PubMedCrossRefGoogle Scholar
  22. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776. CrossRefPubMedGoogle Scholar
  23. Hwang IS, Lee J, Jin HG, Woo ER, Lee DG (2012a) Amentoflavone stimulates mitochondrial dysfunction and induces apoptotic cell death in Candida albicans. Mycopathologia 173(4):207–218. CrossRefPubMedGoogle Scholar
  24. Hwang JH, Hwang IS, Liu QH, Woo ER, Lee DG (2012b) (+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans. Biochimie 94(8):1784–1793. CrossRefPubMedGoogle Scholar
  25. Irani K (2000) Oxidant signaling in vascular cell growth, death, and survival—a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 87(3):179–183. CrossRefPubMedGoogle Scholar
  26. Jahanshiri Z, Shams-Ghahfarokhi M, Allameh A, Razzaghi-Abyaneh M (2012) Effect of curcumin on Aspergillus parasiticus growth and expression of major genes involved in the early and late stages of aflatoxin biosynthesis. Iran J Public Health 41(6):72–79PubMedPubMedCentralGoogle Scholar
  27. Jirovetz L, Buchbauer G, Schmidt E, Stoyanova AS, Denkova Z, Nikolova R, Geissler M (2007) Purity, antimicrobial activities and olfactoric evaluations of geraniol/nerol and various of their derivatives. J Essent Oil Res 19(3):288–291. CrossRefGoogle Scholar
  28. Jou MJ (2008) Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes. Adv Drug Deliver Rev 60(13–14):1512–1526. CrossRefGoogle Scholar
  29. Kang S, Seo JH, Heo TH, Kim SJ (2013) Batten disease is linked to altered expression of mitochondria-related metabolic molecules. Neurochem Int 62(7):931–935. CrossRefPubMedGoogle Scholar
  30. Kannadorai RK, Udumala SK, Sidney YWK (2016) Noninvasive in vivo multispectral optoacoustic imaging of apoptosis in triple negative breast cancer using indocyanine green conjugated phosphatidylserine monoclonal antibody. J Biomed Opt 21(12):126002. CrossRefPubMedGoogle Scholar
  31. Katsukawa M, Nakata R, Takizawa Y, Hori K, Takahashi S, Inoue H (2010) Citral, a component of lemongrass oil, activates PPARalpha and gamma and suppresses COX-2 expression. Biochim Biophys Acta 1801(11):1214–1220. CrossRefPubMedGoogle Scholar
  32. Kefas BA, Cai Y, Ling Z, Heimberg H, Hue L, Pipeleers D, Van de Casteele M (2003a) AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J Mol Endocrinol 30(2):151–161. CrossRefPubMedGoogle Scholar
  33. Kefas BA, Heimberg H, Vaulont S, Meisse D, Hue L, Pipeleers D, Casteele M (2003b) AICA-riboside induces apoptosis of pancreatic beta cells through stimulation of AMP-activated protein kinase. Diabetologia 46(2):250–254. CrossRefPubMedGoogle Scholar
  34. Kim HJ, Park C, Han MH, Hong SH, Kim GY, Hong S, Kim N, Choi YH (2016) Baicalein induces caspase-dependent apoptosis associated with the generation of ROS and the activation of AMPK in human lung carcinoma A549 cells. Drug Develop Res 77(2):73–86. CrossRefGoogle Scholar
  35. Kobayashi D, Kondo K, Uehara N, Otokozawa S, Tsuji N, Yagihashi A, Watanabe N (2002) Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Ch 46(10):3113–3117. CrossRefGoogle Scholar
  36. Lamberts L, De Bie E, Vandeputte GE, Veraverbeke WS, Derycke V, De Man W, Delcour JA (2007) Effect of milling on colour and nutritional properties of rice. Food Chem 100(4):1496–1503. CrossRefGoogle Scholar
  37. Liu SH, Lai YL, Chen BL, Yang FY (2017) Ultrasound enhances the expression of brain-derived neurotrophic factor in astrocyte through activation of TrkB-Akt and calcium-CaMK signaling pathways. Cereb Cortex 27(6):3152–3160. PubMedCrossRefGoogle Scholar
  38. Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145(4):757–767. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Muzaffar S, Bose C, Banerji A, Nair BG, Chattoo BB (2016) Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae. Appl Microbiol Biotechnol 100(1):323–335. CrossRefPubMedGoogle Scholar
  40. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922. CrossRefPubMedGoogle Scholar
  41. OuYang QL, Tao NG, Zhang ML (2018) A damaged oxidative phosphorylation mechanism is involved in the antifungal activity of citral against Penicillium digitatum. Front Microbiol 9.
  42. Park C, Lee DG (2010) Melittin induces apoptotic features in Candida albicans. Biochem Bioph Res Co 394(1):170–172. CrossRefGoogle Scholar
  43. Peng TI, Jou MJ (2010) Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci 1201:183–188. CrossRefPubMedGoogle Scholar
  44. Peraica M, Radic B, Lucic A, Pavlovic M (1999) Toxic effects of mycotoxins in humans. Bull World Health Organ 77(9):754–766PubMedPubMedCentralGoogle Scholar
  45. Philchenkov A (2004) Caspases: potential targets for regulating cell death. J Cell Mol Med 8(4):432–444. CrossRefPubMedGoogle Scholar
  46. Phillips AJ, Sudbery I, Ramsdale M (2003a) Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. P Natl Acad Sci U S A 100(24):14327–14332. CrossRefGoogle Scholar
  47. Phillips AJ, Sudbery I, Ramsdale M (2003b) Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. P Natl Acad Sci USA 100(24):14327–14332. CrossRefGoogle Scholar
  48. Raad II, Hachem RY, Hanna HA, Fang X, Jiang Y, Dvorak T, Sherertz RJ, Kontoyiannis DP (2008) Role of ethylene diamine tetra-acetic acid (EDTA) in catheter lock solutions: EDTA enhances the antifungal activity of amphotericin B lipid complex against Candida embedded in biofilm. Int J Antimicrob Ag 32(6):515–518. CrossRefGoogle Scholar
  49. Reiter J, Herker E, Madeo F, Schmitt M (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol 168(3):353–358. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sarkar S, Uppuluri P, Pierce CG, Lopez-Ribot JL (2014) In vitro study of sequential fluconazole and caspofungin treatment against Candida albicans biofilms. Antimicrob Agents Chemother 58(2):1183–1186. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shen QS, Zhou W, Li HB, Hu LB, Mo HZ (2016) ROS involves the fungicidal actions of thymol against spores of Aspergillus flavus via the induction of nitric oxide. PLoS One 11(5):e0155647. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shi M, Chen L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ (2012) Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiol-SGM 158:166–175. CrossRefGoogle Scholar
  53. Sun Y, Sukumaran P, Selvaraj S, Cilz NI, Schaar A, Lei S, Singh BB (2016) TRPM2 promotes neurotoxin MPP+/MPTP-induced cell death. Mol Neurobiol 55(1):409–420. CrossRefPubMedGoogle Scholar
  54. Sun L, Liao K, Hang C, Wang D (2017) Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One 12(2):e0172228. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tao NG, Fan F, Jia L, Zhang ML (2014) Octanal incorporated in postharvest wax of Satsuma mandarin fruit as a botanical fungicide against Penicillium digitatum. Food Control 45:56–61. CrossRefGoogle Scholar
  56. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, Kawase I, Hirota H (2005) AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol 25(21):9554–9575. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S (2008) Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells. Free Radical Bio Med 45(10):1403–1412. CrossRefGoogle Scholar
  58. Tian J, Zeng X, Zeng H, Feng Z, Miao X, Peng X (2013) Investigations on the antifungal effect of nerol against Aspergillus flavus causing food spoilage. Sci World J 2013:230795–230798. CrossRefGoogle Scholar
  59. Tian J, Zeng XB, Zhang S, Wang YZ, Zhang P, Lu AJ, Peng X (2014) Regional variation in components and antioxidant and antifungal activities of Perilla frutescens essential oils in China. Ind Crop Prod 59:69–79. CrossRefGoogle Scholar
  60. Tian J, Wang YZ, Lu ZQ, Sun CH, Zhang M, Zhu AH, Peng X (2016) Perillaldehyde, a promising antifungal agent used in food preservation, triggers apoptosis through a metacaspase-dependent pathway in Aspergillus flavus. J Agr Food Chem 64(39):7404–7413. CrossRefGoogle Scholar
  61. Uren AG, O'Rourke K, Aravind L, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6(4):961–967. PubMedCrossRefGoogle Scholar
  62. Wang XY, Wang YZ, Zhou YG, Wei XL (2014) Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus. Mycologia 106(5):881–888. CrossRefPubMedGoogle Scholar
  63. Wang YZ, Zeng XB, Zhou ZK, Xing K, Tessema A, Zeng H, Tian J (2015) Inhibitory effect of nerol against Aspergillus niger on grapes through a membrane lesion mechanism. Food Control 55:54–61. CrossRefGoogle Scholar
  64. Wu XZ, Chang WQ, Cheng AX, Sun LM, Lou HX (2010) Plagiochin E, an antifungal active macrocyclic bis(bibenzyl), induced apoptosis in Candida albicans through a metacaspase-dependent apoptotic pathway. BBA-Gen Subjects 1800(4):439–447. CrossRefGoogle Scholar
  65. Yoon DH, Kwon OY, Mang JY, Jung MJ, Kim DY, Park YK, Heo TH, Kim SJ (2011) Protective potential of resveratrol against oxidative stress and apoptosis in batten disease lymphoblast cells. Biochem Bioph Res Co 414(1):49–52. CrossRefGoogle Scholar
  66. Yuan HD, Quan HY, Zhang Y, Kim SH, Chung SH (2010) 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep 3(5):825–831. PubMedCrossRefGoogle Scholar
  67. Yun XM, Rao WB, Xiao CY, Huang QC (2017) Apoptosis of leukemia K562 and Molt-4 cells induced by emamectin benzoate involving mitochondrial membrane potential loss and intracellular Ca2+ modulation. Environ Toxicol Phar 52:280–287. CrossRefGoogle Scholar
  68. Zhang H, Gajate C, Yu LP, Fang YX, Mollinedo F (2007) Mitochondrial-derived ROS in edelfosine-induced apoptosis in yeasts and tumor cells. Acta Pharmacol Sin 28(6):888–894. CrossRefPubMedGoogle Scholar
  69. Zhang J, Yu Q, Han L, Chen C, Li H, Han G (2017a) Study on the apoptosis mediated by cytochrome c and factors that affect the activation of bovine longissimus muscle during postmortem aging. Apoptosis 22(6):777–785. CrossRefPubMedGoogle Scholar
  70. Zhang R, Zhu Y, Dong X, Liu B, Zhang N, Wang X, Liu L, Xu C, Huang S, Chen L (2017b) Celastrol attenuates cadmium-induced neuronal apoptosis via inhibiting Ca2+-CaMKII-dependent Akt/mTOR pathway. J Cell Physiol 232(8):2145–2157. CrossRefPubMedGoogle Scholar
  71. Zheng QY, Jin FS, Yao C, Zhang T, Zhang GH, Ai X (2012) Ursolic acid-induced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells. Biochem Bioph Res Co 419(4):741–747. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Life ScienceJiangsu Normal UniversityJiangsu ProvincePeople’s Republic of China
  2. 2.Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingPeople’s Republic of China
  3. 3.Key Lab for New Drug Research of TCM and Shenzhen Branch, State R&D Centre for Viro-BiotechResearch Institute of Tsinghua University in ShenzhenShenzhenPeople’s Republic of China

Personalised recommendations