Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 15, pp 6319–6331 | Cite as

Microbial production of toxins from the scorpion venom: properties and applications

  • Fernanda Gobbi Amorim
  • Francielle Almeida Cordeiro
  • Ernesto Lopes Pinheiro-Júnior
  • Johara Boldrini-França
  • Eliane Candiani Arantes
Mini-Review

Abstract

Scorpion venom are composed mainly of bioactive proteins and peptides that may serve as lead compounds for the design of biotechnological tools and therapeutic drugs. However, exploring the therapeutic potential of scorpion venom components is mainly impaired by the low yield of purified toxins from milked venom. Therefore, production of toxin-derived peptides and proteins by heterologous expression is the strategy of choice for research groups and pharmaceutical industry to overcome this limitation. Recombinant expression in microorganisms is often the first choice, since bacteria and yeast systems combine high level of recombinant protein expression, fast cell growth and multiplication and simple media requirement. Herein, we present a comprehensive revision, which describes the scorpion venom components that were produced in their recombinant forms using microbial systems. In addition, we highlight the pros and cons of performing the heterologous expression of these compounds, regarding the particularities of each microorganism and how these processes can affect the application of these venom components. The most used microbial system in the heterologous expression of scorpion venom components is Escherichia coli (85%), and among all the recombinant venom components produced, 69% were neurotoxins. This review may light up future researchers in the choice of the best expression system to produce scorpion venom components of interest.

Keywords

Scorpion venom components Neurotoxins Heterologous expression Microbial systems Biotechnology Applied microbiology 

Notes

Compliance with ethical standards

Ethical statement approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301–5317.  https://doi.org/10.1007/s00253-014-5732-5 PubMedPubMedCentralGoogle Scholar
  2. Amaro I, Riaño-Umbarila L, Becerril B, Possani LD (2011) Isolation and characterization of a human antibody fragment specific for Ts1 toxin from Tityus serrulatus scorpion. Immunol Lett 139(1-2):73–79.  https://doi.org/10.1016/j.imlet.2011.05.002 PubMedGoogle Scholar
  3. Amorim FG, Boldrini-França J, de Castro Figueiredo Bordon K, Cardoso IA, De Pauw E, Quinton L, Kashima S, Arantes EC (2018) Heterologous expression of rTsHyal-1: the first recombinant hyaluronidase of scorpion venom produced in Pichia pastoris system. Appl Microbiol Biotechnol 102(7):3145–3158.  https://doi.org/10.1007/s00253-018-8821-z PubMedGoogle Scholar
  4. Anangi R, Koshy S, Huq R, Beeton C, Chuang WJ, King GF (2012) Recombinant expression of margatoxin and agitoxin-2 in Pichia pastoris: an efficient method for production of KV1.3 channel blockers. PLoS One 7(12):e52965.  https://doi.org/10.1371/journal.pone.0052965 PubMedPubMedCentralGoogle Scholar
  5. Baeshen MN, Al-Hejin AM, Bora RS, Ahmed MM, Ramadan HA, Saini KS, Baeshen NA, Redwan EM (2015) Production of biopharmaceuticals in E. coli: current scenario and future perspectives. J Microbiol Biotechnol 25(7):953–962.  https://doi.org/10.4014/jmb.1412.12079 PubMedGoogle Scholar
  6. Banerjee S, Curto EV, Beckman M, Brown GB, Zhong J, Krishna NR (2006) Expression of functional scorpion neurotoxin Lqq-V in E.coli. Peptides 27(1):49–54.  https://doi.org/10.1016/j.peptides.2005.06.023 PubMedGoogle Scholar
  7. Benkhadir K, Kharrat R, Cestèle S, Mosbah A, Rochat H, El Ayeb M, Karoui H (2004) Molecular cloning and functional expression of the alpha-scorpion toxin BotIII: pivotal role of the C-terminal region for its interaction with voltage-dependent sodium channels. Peptides 25(2):151–161.  https://doi.org/10.1016/j.peptides.2004.01.009 PubMedGoogle Scholar
  8. Boldrini-Franca J, Cologna CT, Pucca MB, Bordon KC, Amorim FG, Anjolette FA, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro-Junior EL, Shibao PY, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC (2017) Minor snake venom proteins: structure, function and potential applications. Biochim Biophys Acta 1861(4):824–838.  https://doi.org/10.1016/j.bbagen.2016.12.022 PubMedGoogle Scholar
  9. Bordon KC, Wiezel GA, Amorim FG, Arantes EC (2015) Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology. J Venom Anim Toxins Incl Trop Dis 21:43.  https://doi.org/10.1186/s40409-015-0042-7 PubMedPubMedCentralGoogle Scholar
  10. Bougis PE, Rochat H, Smith LA (1989) Precursors of Androctonus australis scorpion neurotoxins. Structures of precursors, processing outcomes, and expression of a functional recombinant toxin II. J Biol Chem 264(32):19259–19265PubMedGoogle Scholar
  11. Bouhaouala-Zahar B, Ducancel F, Zenouaki I, Ben Khalifa R, Borchani L, Pelhate M, Boulain JC, El Ayeb M, Ménez A, Karoui H (1996) A recombinant insect-specific alpha-toxin of Buthus occitanus tunetanus scorpion confers protection against homologous mammal toxins. Eur J Biochem 238(3):653–660PubMedGoogle Scholar
  12. Byme B (2015) Pichia pastoris as an expression host for membrane protein structural biology. Curr Opin Struct Biol 32:9–17.  https://doi.org/10.1016/j.sbi.2015.01.005 Google Scholar
  13. Calik P, Ata O, Gunes H, Massahi A, Boy E, Keskin A, Ozturk S, Zerze GH, Ozdamar TH (2015) Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters. Biochem Eng J 95:20–36.  https://doi.org/10.1016/j.bej.2014.12.003 Google Scholar
  14. Cao Z, Xiao F, Peng F, Jiang D, Mao X, Liu H, Li W, Hu D, Wang T (2003) Expression, purification and functional characterization of a recombinant scorpion venom peptide BmTXKbeta. Peptides 24(2):187–192PubMedGoogle Scholar
  15. Cao P, Yu J, Lu W, Cai X, Wang Z, Gu Z, Zhang J, Ye T, Wang M (2010) Expression and purification of an antitumor-analgesic peptide from the venom of Mesobuthus martensii Karsch by small ubiquitin-related modifier fusion in Escherichia coli. Biotechnol Prog 26 (5):1240–1244.  https://doi.org/10.1002/btpr.433
  16. Cao Q, Lu W, Cai X, Hu C, Wang C, Ye J, Yan H, Yang Y, Wang Z, Huo J, Liu Y, Yu Y, Ling C, Cao P (2015) In vitro refolding and functional analysis of polyhistidine-tagged Buthus martensii Karsch antitumoranalgesic peptide produced in Escherichia coli. Biotechnol Lett 37 (12):2461–2466.  https://doi.org/10.1007/s10529-015-1936-8
  17. Carballar-Lejarazú R, Rodríguez MH, de la Cruz Hernández-Hernández M, Ramos-Castañeda J, Possani LD, Zurita-Ortega M, Reynaud-Garza E, Hernández-Rivas R, Loukeris T, Lycett G, Lanz-Mendoza H (2008) Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cell Mol Life Sci 65(19):3081–3092.  https://doi.org/10.1007/s00018-008-8250-8 PubMedGoogle Scholar
  18. Casewell NR (2016) Venom evolution: gene loss shapes phenotypic adaptation. Curr Biol 26(18):R849–R851.  https://doi.org/10.1016/j.cub.2016.07.082 PubMedGoogle Scholar
  19. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66PubMedGoogle Scholar
  20. Chai ZF, Zhu MM, Bai ZT, Liu T, Tan M, Pang XY, Ji YH (2006) Chinese-scorpion (Buthus martensi Karsch) toxin BmK alphaIV, a novel modulator of sodium channels: from genomic organization to functional analysis. Biochem J 399(3):445–453.  https://doi.org/10.1042/BJ20060035 PubMedPubMedCentralGoogle Scholar
  21. Chan YS, Cheung RC, Xia L, Wong JH, Ng TB, Chan WY (2016) Snake venom toxins: toxicity and medicinal applications. Appl Microbiol Biotechnol 100(14):6165–6181.  https://doi.org/10.1007/s00253-016-7610-9 PubMedGoogle Scholar
  22. Chen R (2012) Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30(5):1102–1107.  https://doi.org/10.1016/j.biotechadv.2011.09.013 PubMedGoogle Scholar
  23. Chen ZY, Hu YT, Yang WS, He YW, Feng J, Wang B, Zhao RM, Ding JP, Cao ZJ, Li WX, Wu YL (2012) Hg1, novel peptide inhibitor specific for Kv1.3 channels from first scorpion Kunitz-type potassium channel toxin family. J Biol Chem 287(17):13813–13821.  https://doi.org/10.1074/jbc.M112.343996 PubMedPubMedCentralGoogle Scholar
  24. Chen Z, Cao Z, Li W, Wu Y (2013) Cloning and characterization of a novel Kunitz-type inhibitor from scorpion with unique cysteine framework. Toxicon 72:5–10.  https://doi.org/10.1016/j.toxicon.2013.05.022 PubMedGoogle Scholar
  25. Chen Z, Hu Y, Hu J, Yang W, Sabatier JM, De Waard M, Cao Z, Li W, Han S, Wu Y (2014) Unusual binding mode of scorpion toxin BmKTX onto potassium channels relies on its distribution of acidic residues. Biochem Biophys Res Commun 447(1):70–76.  https://doi.org/10.1016/j.bbrc.2014.03.101 PubMedGoogle Scholar
  26. Chippaux JP, Williams V, White J (1991) Snake venom variability: methods of study, results and interpretation. Toxicon 29(11):1279–1303PubMedGoogle Scholar
  27. Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li HJ, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100(9):5022–5027.  https://doi.org/10.1073/pnas.0931263100 PubMedPubMedCentralGoogle Scholar
  28. Cohen L, Karbat I, Gilles N, Ilan N, Benveniste M, Gordon D, Gurevitz M (2005) Common features in the functional surface of scorpion beta-toxins and elements that confer specificity for insect and mammalian voltage-gated sodium channels. J Biol Chem 280(6):5045–5053.  https://doi.org/10.1074/jbc.M408427200 PubMedGoogle Scholar
  29. Cordeiro FA, Amorim FG, Anjolette FA, Arantes EC (2015) Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva. J Venom Anim Toxins Incl Trop Dis 21:24.  https://doi.org/10.1186/s40409-015-0028-5 PubMedPubMedCentralGoogle Scholar
  30. Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia-Pastoris as a host system for transformations. Mol Cell Biol 5(12):3376–3385.  https://doi.org/10.1128/Mcb.5.12.3376 PubMedPubMedCentralGoogle Scholar
  31. Cremonez CM, Maiti M, Peigneur S, Cassoli JS, Dutra AA, Waelkens E, Lescrinier E, Herdewijn P, de Lima ME, Pimenta AM, Arantes EC, Tytgat J (2016) Structural and functional elucidation of peptide Ts11 shows evidence of a novel subfamily of scorpion venom toxins. Toxins (Basel) 8(10).  https://doi.org/10.3390/toxins8100288
  32. Dai H, Yin S, Li T, Cao Z, Ji Y, Wu Y, Li W (2012) Recombinant expression, purification, and characterization of scorpion toxin BmαTX14. Protein Expr Purif 82(2):325–331.  https://doi.org/10.1016/j.pep.2012.02.001 PubMedGoogle Scholar
  33. De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87(5):1617–1631.  https://doi.org/10.1007/s00253-010-2721-1 PubMedGoogle Scholar
  34. Deng T, Ge H, He H, Liu Y, Zhai C, Feng L, Yi L (2017) The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purif 140:52–59.  https://doi.org/10.1016/j.pep.2017.08.003 PubMedGoogle Scholar
  35. Ding L, Chen J, Hao J, Zhang J, Huang X, Hu F, Wu Z, Liu Y, Li W, Cao Z, Wu Y, Li J, Li S, Liu H, Wu W, Chen Z (2017) Discovery of three toxin peptides with Kv1.3 channel and IL-2 cytokine-inhibiting activities from Non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Peptides 91:13–19.  https://doi.org/10.1016/j.peptides.2017.03.005 PubMedGoogle Scholar
  36. Estrada G, Garcia BI, Schiavon E, Ortiz E, Cestele S, Wanke E, Possani LD, Corzo G (2007) Four disulfide-bridged scorpion beta neurotoxin CssII: heterologous expression and proper folding in vitro. Biochim Biophys Acta 1770(8):1161–1168.  https://doi.org/10.1016/j.bbagen.2007.04.006 PubMedGoogle Scholar
  37. Feng J, Yu C, Wang M, Li Z, Wu Y, Cao Z, Li W, He X, Han S (2013) Expression and characterization of a novel scorpine-like peptide Ev37, from the scorpion Euscorpiops validus. Protein Expr Purif 88(1):127–133.  https://doi.org/10.1016/j.pep.2012.12.004 PubMedGoogle Scholar
  38. Ferrer-Miralles N, Saccardo P, Corchero JL, Xu Z, Garcia-Fruitos E (2015) General introduction: recombinant protein production and purification of insoluble proteins. Methods Mol Biol 1258:1–24.  https://doi.org/10.1007/978-1-4939-2205-5_1 PubMedGoogle Scholar
  39. Fitches EC, Bell HA, Powell ME, Back E, Sargiotti C, Weaver RJ, Gatehouse JA (2010) Insecticidal activity of scorpion toxin (ButaIT) and snowdrop lectin (GNA) containing fusion proteins towards pest species of different orders. Pest Manag Sci 66(1):74–83.  https://doi.org/10.1002/ps.1833 PubMedGoogle Scholar
  40. Fletcher PL, Fletcher MD, Possani LD (1992) Characteristics of pancreatic exocrine secretion produced by venom from the Brazilian scorpion. Tityus serrulatus. Eur J Cell Biol 58(2):259–270Google Scholar
  41. Flores-Solis D, Toledano Y, Rodríguez-Lima O, Cano-Sánchez P, Ramírez-Cordero BE, Landa A, Rodríguez de la Vega RC, Del Rio-Portilla F (2016) Solution structure and antiparasitic activity of scorpine-like peptides from Hoffmannihadrurus gertschi. FEBS Lett 590(14):2286–2296.  https://doi.org/10.1002/1873-3468.12255 PubMedGoogle Scholar
  42. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10:483–511.  https://doi.org/10.1146/annurev.genom.9.081307.164356 PubMedGoogle Scholar
  43. Fu YJ, Chai BF, Wang W, Zhi H, Yin LT, Liang AH (2004) Expression and purification of the BmK Mm2 neurotoxin from the scorpion Buthus martensii Karsch and its biological activity test. Protein Expr Purif 38(1):45–50.  https://doi.org/10.1016/j.pep.2004.06.038 PubMedGoogle Scholar
  44. Fu YJ, Yin LT, Wang W, Chai BF, Liang AH (2005) Synthesis, expression and purification of a type of chlorotoxin-like peptide from the scorpion, Buthus martensii Karsch, and its acute toxicity analysis. Biotechnol Lett 27(20):1597–1603.  https://doi.org/10.1007/s10529-005-2514-2 PubMedGoogle Scholar
  45. Fu Y, Yang R, Liang A, Xu C, Hu C (2011) Recombinant scorpion insect excitatory toxin BmK IT accelerates the growth of insect Spodoptera frugiperda 9 cells. Mol Cell Biochem 351(1-2):93–98.  https://doi.org/10.1007/s11010-011-0715-7 PubMedGoogle Scholar
  46. Garcia-Fraga B, da Silva AF, Lopez-Seijas J, Sieiro C (2015) Optimized expression conditions for enhancing production of two recombinant chitinolytic enzymes from different prokaryote domains. Bioprocess Biosyst Eng 38(12):2477–2486.  https://doi.org/10.1007/s00449-015-1485-5 PubMedGoogle Scholar
  47. García-Gómez BI, Olamendi-Portugal TC, Paniagua J, van der Walt J, Dyason K, Possani LD (2009) Heterologous expression of a gene that codes for Pg8, a scorpion toxin of Parabuthus granulatus, capable of generating protecting antibodies in mice. Toxicon 53(7-8):770–778.  https://doi.org/10.1016/j.toxicon.2009.02.011 PubMedGoogle Scholar
  48. Gilles N, Krimm I, Bouet F, Froy O, Gurevitz M, Lancelin JM, Gordon D (2000) Structural implications on the interaction of scorpion alpha-like toxins with the sodium channel receptor site inferred from toxin iodination and pH-dependent binding. J Neurochem 75(4):1735–1745PubMedGoogle Scholar
  49. Gómez S, López-Estepa M, Fernández FJ, Suárez T, Vega MC (2016) Alternative eukaryotic expression systems for the production of proteins and protein complexes. Adv Exp Med Biol 896:167–184.  https://doi.org/10.1007/978-3-319-27216-0_11 PubMedGoogle Scholar
  50. González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R (2012) K(+) channels: function-structural overview. Compr Physiol 2(3):2087–2149.  https://doi.org/10.1002/cphy.c110047 PubMedGoogle Scholar
  51. Gräslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, dhe- Paganon S, Park HW, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim SH, Rao Z, Shi Y, Terwilliger TC, Kim CY, Hung LW, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schütz A, Heinemann U, Yokoyama S, Büssow K, Gunsalus KC, Structural Genomics Consortium, China Structural Genomics Consortium, Northeast Sttructural Genomics Consortium (2008) Protein production and purification. Nat Methods 5(2):135–146.  https://doi.org/10.1038/nmeth.f.202 PubMedGoogle Scholar
  52. Grizel AV, Glukhov GS, Sokolova OS (2014) Mechanisms of Activation of Voltage-Gated Potassium Channels. Acta Naturae 6(4):10–26PubMedPubMedCentralGoogle Scholar
  53. Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, Chen T, Shaw C (2013) Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochimie 95(9):1784–1794.  https://doi.org/10.1016/j.biochi.2013.06.003 PubMedGoogle Scholar
  54. Hao CJ, Xu CG, Wang W, Chai BF, Liang AH (2005) Expression of an insect excitatory toxin, BmK IT, from the scorpion, Buthus martensii Karsch, and its biological activity. Biotechnol Lett 27(23-24):1929–1934.  https://doi.org/10.1007/s10529-005-3905-0 PubMedGoogle Scholar
  55. Hariprasad G, Saravanan K, Singh SB, Das U, Sharma S, Kaur P, Singh TP, Srinivasan A (2009) Group III PLA2 from the scorpion, Mesobuthus tamulus: cloning and recombinant expression in E. coli. Electron. J Biotechnol 12(3):7Google Scholar
  56. Harrison PL, Abdel-Rahman MA, Miller K, Strong PN (2014) Antimicrobial peptides from scorpion venoms. Toxicon 88:115–137.  https://doi.org/10.1016/j.toxicon.2014.06.006 PubMedGoogle Scholar
  57. Housley DM, Housley GD, Liddell MJ, Jennings EA (2017) Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 127:46–78.  https://doi.org/10.1016/j.neuropharm.2016.10.004 PubMedGoogle Scholar
  58. Itakura K, Hirose T, Crea R, Riggs AD, Heyneker HL, Bolivar F, Boyer HW (1977) Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198(4321):1056–1063PubMedGoogle Scholar
  59. Jimenez-Vargas JM, Restano-Cassulini R, Quintero-Hernández V, Gurrola GB, Possani LD (2011) Recombinant expression of the toxic peptide ErgTx1 and role of Met35 on its stability and function. Peptides 32(3):560–567.  https://doi.org/10.1016/j.peptides.2010.06.018 PubMedGoogle Scholar
  60. Jin S, Lin X, Guan H, Wu J (2015) Cell-specific expression of the analgesic-antitumor peptide coding sequence under the control of the human α-fetoprotein gene promoter and enhancer. Exp Ther Med 9(3):863–867.  https://doi.org/10.3892/etm.2015.2166
  61. Johnson TM, Quick MW, Sakai TT, Krishna NR (2000) Expression of functional recombinant scorpion beta-neurotoxin Css II in E. coli. Peptides 21(6):767–772PubMedGoogle Scholar
  62. Jozala AF, Geraldes DC, Tundisi LL, Feitosa VA, Breyer CA, Cardoso SL, Mazzola PG, Oliveira-Nascimento L, Rangel-Yagui CO, Magalhaes PO, Oliveira MA, Pessoa A Jr (2016) Biopharmaceuticals from microorganisms: from production to purification. Braz J Microbiol 47(Suppl 1):51–63.  https://doi.org/10.1016/j.bjm.2016.10.007 PubMedPubMedCentralGoogle Scholar
  63. Kaur J, Kumar A, Kaur J (2018) Strategies for optimization of heterologous protein expression in E. coli: roadblocks and reinforcements. Int J Biol Macromol 106:803–822.  https://doi.org/10.1016/j.ijbiomac.2017.08.080 PubMedGoogle Scholar
  64. Keys TG, Aebi M (2017) Engineering protein glycosylation in prokaryotes. Curr Opin Syst Biol 5:23–31Google Scholar
  65. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355.  https://doi.org/10.1146/annurev-biochem-060208-092442 PubMedGoogle Scholar
  66. Klenk KC, Tenenholz TC, Matteson DR, Rogowski RS, Blaustein MP, Weber DJ (2000) Structural and functional differences of two toxins from the scorpion Pandinus imperator. Proteins 38(4):441–449PubMedGoogle Scholar
  67. Klint JK, Senff S, Saez NJ, Seshadri R, Lau HY, Bende NS, Undheim EA, Rash LD, Mobli M, King GF (2013) Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS One 8(5):e63865.  https://doi.org/10.1371/journal.pone.0063865 PubMedPubMedCentralGoogle Scholar
  68. Koh DC, Armugam A, Jeyaseelan K (2006) Snake venom components and their applications in biomedicine. Cell Mol Life Sci 63(24):3030–3041.  https://doi.org/10.1007/s00018-006-6315-0 PubMedGoogle Scholar
  69. Korolkova YV, Kozlov SA, Lipkin AV, Pluzhnikov KA, Hadley JK, Filippov AK, Brown DA, Angelo K, Strøbaek D, Jespersen T, Olesen SP, Jensen BS, Grishin EV (2001) An ERG channel inhibitor from the scorpion Buthus eupeus. J Biol Chem 276(13):9868–9876.  https://doi.org/10.1074/jbc.M005973200 PubMedGoogle Scholar
  70. Krayem N, Abdelkefi-Koubaa Z, Marrakchi N, Luis J, Gargouri Y (2018a) Anti-angiogenic effect of phospholipases A. Toxicon 145:6–14.  https://doi.org/10.1016/j.toxicon.2018.02.042 PubMedGoogle Scholar
  71. Krayem N, Abdelkefi-Koubaa Z, Gargouri Y, Luis J (2018b) Integrin-mediated human glioblastoma cells adhesion, migration and invasion by native and recombinant phospholipases of Scorpio maurus venom glands. Arch Biochem Biophys 645:7Google Scholar
  72. Kresse GB (2009) Biosimilars—science, status, and strategic perspective. Eur J Pharm Biopharm 72(3):479–486.  https://doi.org/10.1016/j.ejpb.2009.02.014 PubMedGoogle Scholar
  73. Legros C, Céard B, Vacher H, Marchot P, Bougis PE, Martin-Eauclaire MF (2005) Expression of the standard scorpion alpha-toxin AaH II and AaH II mutants leading to the identification of some key bioactive elements. Biochim Biophys Acta 1723(1-3):91–99.  https://doi.org/10.1016/j.bbagen.2005.01.008 PubMedGoogle Scholar
  74. Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80(2):260–267.  https://doi.org/10.1016/j.pep.2011.08.001 PubMedGoogle Scholar
  75. Li H, Xia Y (2008) Expression, antiserum preparation and bioactivity assays of insect neurotoxin LqhIT2. Sheng Wu Gong Cheng Xue Bao 24(10):1761–1767PubMedGoogle Scholar
  76. Li C, Liu W, Bossmans F, Zhu RH, Tytgat J, Wang DC (2005) Expression, renaturation and functional analysis of an excitatory insect-specific toxin from scorpion Buthus martensii Karsch. Protein Pept Lett 12(7):635–638PubMedGoogle Scholar
  77. Li Z, Xu X, Meng L, Zhang Q, Cao L, Li W, Wu Y, Cao Z (2014) Hp1404, a new antimicrobial peptide from the scorpion Heterometrus petersii. PLoS One 9(5):e97539.  https://doi.org/10.1371/journal.pone.0097539 PubMedPubMedCentralGoogle Scholar
  78. Lin S, Wang X, Hu X, Zhao Y, Zhao M, Zhang J, Cui Y (2017) Recombinant expression, functional characterization of two scorpion venom toxins with three disulfide bridges from the Chinese scorpion Buthus martensii Karsch. Protein Pept Lett 24(3):235–240.  https://doi.org/10.2174/0929866524666170117142404 PubMedGoogle Scholar
  79. Liu YF, Ma RL, Wang SL, Duan ZY, Zhang JH, Wu LJ, Wu CF (2003) Expression of an antitumor-analgesic peptide from the venom of Chinese scorpion Buthus martensii karsch in Escherichia coli. Protein Expr Purif 27(2):253–258PubMedGoogle Scholar
  80. Liu H, Chen J, Wang X, Yan S, Xu Y, San M, Tang W, Yang F, Cao Z, Li W, Wu Y, Chen Z (2015) Functional characterization of a new non-Kunitz serine protease inhibitor from the scorpion Lychas mucronatus. Int J Biol Macromol 72:158–162.  https://doi.org/10.1016/j.ijbiomac.2014.08.010 PubMedGoogle Scholar
  81. Lyons SA, O'Neal J, Sontheimer H (2002) Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39(2):162–173.  https://doi.org/10.1002/glia.10083 PubMedGoogle Scholar
  82. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270.  https://doi.org/10.1002/yea.1208 PubMedGoogle Scholar
  83. Maertens C, Cuypers E, Amininasab M, Jalali A, Vatanpour H, Tytgat J (2006) Potent modulation of the voltage-gated sodium channel Nav1.7 by OD1, a toxin from the scorpion Odonthobuthus doriae. Mol Pharmacol 70(1):405–414.  https://doi.org/10.1124/mol.106.022970 PubMedGoogle Scholar
  84. Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512–538PubMedPubMedCentralGoogle Scholar
  85. de Marco A (2009) Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 8:26.  https://doi.org/10.1186/1475-2859-8-26 PubMedPubMedCentralGoogle Scholar
  86. Martin-Eauclaire MF, Søgaard M, Ramos C, Cestèle S, Bougis PE, Svensson B (1994) Production of active, insect-specific scorpion neurotoxin in yeast. Eur J Biochem 223(2):637–645PubMedGoogle Scholar
  87. Martin-Eauclaire MF, Pimenta AM, Bougis PE, De Lima ME (2016) Potassium channel blockers from the venom of the Brazilian scorpion Tityus serrulatus. Toxicon 119:253–265.  https://doi.org/10.1016/j.toxicon.2016.06.016 PubMedGoogle Scholar
  88. Martinez F, Becerril B, Gurrola GB, Martin BM, Possani LD (1996) Synthesis and expression of the gene coding for noxiustoxin, a K+ channel-blocking peptide from the venom of the scorpion Centruroides noxius. Toxicon 34(11-12):1413–1419PubMedGoogle Scholar
  89. Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D (2012) Recombinant protein production in yeasts. Methods Mol Biol 824:329–358.  https://doi.org/10.1007/978-1-61779-433-9_17 PubMedGoogle Scholar
  90. Meehl MA, Stadheim TA (2014) Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol 30:120–127.  https://doi.org/10.1016/j.copbio.2014.06.007 PubMedGoogle Scholar
  91. Mendes TM, Dias F, Horta CC, Pena IF, Arantes EC, Kalapothakis E (2008) Effective Tityus serrulatus anti-venom produced using the Ts1 component. Toxicon 52(7):787–793.  https://doi.org/10.1016/j.toxicon.2008.08.005 PubMedGoogle Scholar
  92. Meng L, Xie Z, Zhang Q, Li Y, Yang F, Chen Z, Li W, Cao Z, Wu Y (2016) Scorpion Potassium Channel-blocking Defensin Highlights a Functional Link with Neurotoxin. J Biol Chem 291(13):7097–7106.  https://doi.org/10.1074/jbc.M115.680611 PubMedPubMedCentralGoogle Scholar
  93. Nekrasova O, Yakimov S, Kirpichnikov M, Feofanov A (2018) Recombinant scorpion toxins: focus on four-disulfide peptide blockers of Kv1-channels. Bioengineered 9(1):25–29.  https://doi.org/10.1080/21655979.2017.1373530 PubMedGoogle Scholar
  94. Nevalainen H, Peterson R (2014) Making recombinant proteins in filamentous fungi- are we expecting too much? Front Microbiol 5:75.  https://doi.org/10.3389/fmicb.2014.00075 PubMedPubMedCentralGoogle Scholar
  95. Niu M, Li X, Wei J, Cao R, Zhou B, Chen P (2008) The molecular design of a recombinant antimicrobial peptide CP and its in vitro activity. Protein Expr Purif 57(1):95–100.  https://doi.org/10.1016/j.pep.2007.08.006 PubMedGoogle Scholar
  96. Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8(11):765–778.  https://doi.org/10.1038/nrmicro2383 PubMedGoogle Scholar
  97. Nothaft H, Szymanski CM (2013) Bacterial protein N-glycosylation: new perspectives and applications. J Biol Chem 288(10):6912–6920.  https://doi.org/10.1074/jbc.R112.417857 PubMedPubMedCentralGoogle Scholar
  98. O'Reilly AO, Cole AR, Lopes JL, Lampert A, Wallace BA (2014) Chaperone-mediated native folding of a β-scorpion toxin in the periplasm of Escherichia coli. Biochim Biophys Acta 1840(1):10–15.  https://doi.org/10.1016/j.bbagen.2013.08.021 PubMedPubMedCentralGoogle Scholar
  99. Ortiz E, Possani LD (2015) The unfulfilled promises of scorpion insectotoxins. J Venom Anim Toxins Incl Trop Dis 21:16.  https://doi.org/10.1186/s40409-015-0019-6 PubMedPubMedCentralGoogle Scholar
  100. Ortiz E, Gurrola GB, Schwartz EF, Possani LD (2015) Scorpion venom components as potential candidates for drug development. Toxicon 93:125–135.  https://doi.org/10.1016/j.toxicon.2014.11.233 PubMedGoogle Scholar
  101. Overton TW (2014) Recombinant protein production in bacterial hosts. Drug Discov Today 19(5):590–601.  https://doi.org/10.1016/j.drudis.2013.11.008 PubMedGoogle Scholar
  102. Pang SZ, Oberhaus SM, Rasmussen JL, Knipple DC, Bloomquist JR, Dean DH, Bowman KD, Sanford JC (1992) Expression of a gene encoding a scorpion insectotoxin peptide in yeast, bacteria and plants. Gene 116(2):165–172PubMedGoogle Scholar
  103. Park CS, Hausdorff SF, Miller C (1991) Design, synthesis, and functional expression of a gene for charybdotoxin, a peptide blocker of K+ channels. Proc Natl Acad Sci U S A 88(6):2046–2050PubMedPubMedCentralGoogle Scholar
  104. Peigneur S, Tytgat J (2018) Toxins in Drug Discovery and Pharmacology. Toxins (Basel) 10(3).  https://doi.org/10.3390/toxins10030126
  105. Peng F, Zeng XC, He XH, Pu J, Li WX, Zhu ZH, Liu H (2002) Molecular cloning and functional expression of a gene encoding an antiarrhythmia peptide derived from the scorpion toxin. Eur J Biochem 269(18):4468–4475PubMedGoogle Scholar
  106. Perumal Samy R, Gopalakrishnakone P, Thwin MM, Chow TK, Bow H, Yap EH, Thong TW (2007) Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes. J Appl Microbiol 102(3):650–659.  https://doi.org/10.1111/j.1365-2672.2006.03161.x PubMedGoogle Scholar
  107. Pessini AC, Takao TT, Cavalheiro EC, Vichnewski W, Sampaio SV, Giglio JR, Arantes EC (2001) A hyaluronidase from Tityus serrulatus scorpion venom: isolation, characterization and inhibition by flavonoids. Toxicon 39(10):1495–1504PubMedGoogle Scholar
  108. Pham Trung N, Fitches E, Gatehouse JA (2006) A fusion protein containing a lepidopteran-specific toxin from the South Indian red scorpion (Mesobuthus tamulus) and snowdrop lectin shows oral toxicity to target insects. BMC Biotechnol 6:18.  https://doi.org/10.1186/1472-6750-6-18 PubMedGoogle Scholar
  109. Pohl S, Harwood CR (2010) Heterologous protein secretion by bacillus species from the cradle to the grave. Adv Appl Microbiol 73:1–25.  https://doi.org/10.1016/S0065-2164(10)73001-X PubMedGoogle Scholar
  110. Pope B, Kent HM (1996) High efficiency 5 min transformation of Escherichia coli. Nucleic Acids Res 24(3):536–537PubMedPubMedCentralGoogle Scholar
  111. Quintero-Hernández V, Ortiz E, Rendón-Anaya M, Schwartz EF, Becerril B, Corzo G, Possani LD (2011) Scorpion and spider venom peptides: gene cloning and peptide expression. Toxicon 58(8):644–663.  https://doi.org/10.1016/j.toxicon.2011.09.015 PubMedGoogle Scholar
  112. Quintero-Hernández V, Jiménez-Vargas JM, Gurrola GB, Valdivia HH, Possani LD (2013) Scorpion venom components that affect ion-channels function. Toxicon 76:328–342.  https://doi.org/10.1016/j.toxicon.2013.07.012 PubMedPubMedCentralGoogle Scholar
  113. Rogowski RS, Collins JH, O'Neill TJ, Gustafson TA, Werkman TR, Rogawski MA, Tenenholz TC, Weber DJ, Blaustein MP (1996) Three new toxins from the scorpion Pandinus imperator selectively block certain voltage-gated K+ channels. Mol Pharmacol 50(5):1167–1177PubMedGoogle Scholar
  114. Rosano GL, Ceccarelli EA (2014a) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172.  https://doi.org/10.3389/fmicb.2014.00172 PubMedPubMedCentralGoogle Scholar
  115. Rosano GL, Ceccarelli EA (2014b) Recombinant protein expression in microbial systems. Front Microbiol 5:341.  https://doi.org/10.3389/fmicb.2014.00341 PubMedPubMedCentralGoogle Scholar
  116. Sanchez-Garcia L, Martin L, Mangues R, Ferrer-Miralles N, Vazquez E, Villaverde A (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Fact 15:33.  https://doi.org/10.1186/s12934-016-0437-3 PubMedPubMedCentralGoogle Scholar
  117. Saucedo AL, Flores-Solis D, Rodríguez de la Vega RC, Ramírez-Cordero B, Hernández-López R, Cano-Sánchez P, Noriega Navarro R, García-Valdés J, Coronas-Valderrama F, de Roodt A, Brieba LG, Domingos Possani L, del Río-Portilla F (2012) New tricks of an old pattern: structural versatility of scorpion toxins with common cysteine spacing. J Biol Chem 287 (15):12321-12330. doi: https://doi.org/10.1074/jbc.M111.329607
  118. Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 189(23):8746–8749.  https://doi.org/10.1128/JB.01368-07 PubMedPubMedCentralGoogle Scholar
  119. Shao F, Xiong YM, Zhu RH, Ling MH, Chi CW, Wang DC (1999) Expression and purification of the BmK M1 neurotoxin from the scorpion Buthus martensii Karsch. Protein Expr Purif 17(3):358–365.  https://doi.org/10.1006/prep.1999.1127 PubMedGoogle Scholar
  120. Shao JH, Wang YQ, Wu XY, Jiang R, Zhang R, Wu CF, Zhang JH (2008) Cloning, expression, and pharmacological activity of BmK AS, an active peptide from scorpion Buthus martensii Karsch. Biotechnol Lett 30(1):23–29.  https://doi.org/10.1007/s10529-007-9499-y PubMedGoogle Scholar
  121. Shao JH, Cui Y, Zhao MY, Wu CF, Liu YF, Zhang JH (2014) Purification, characterization, and bioactivity of a new analgesic-antitumor peptide from Chinese scorpion Buthus martensii Karsch. Peptides 53:89–96.  https://doi.org/10.1016/j.peptides.2013.10.023 PubMedGoogle Scholar
  122. Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23(5):345–357.  https://doi.org/10.1016/j.biotechadv.2005.04.004 PubMedGoogle Scholar
  123. Song Y, Gong K, Yan H, Hong W, Wang L, Wu Y, Li W, Cao Z (2014) Sj7170, a unique dual-function peptide with a specific α-chymotrypsin inhibitory activity and a potent tumor-activating effect from scorpion venom. J Biol Chem 289(17):11667–11680.  https://doi.org/10.1074/jbc.M113.540419 PubMedPubMedCentralGoogle Scholar
  124. Song AA, In LLA, Lim SHE, Rahim RA (2017) A review on Lactococcus lactis: from food to factory. Microb Cell Fact 16(1):55.  https://doi.org/10.1186/s12934-017-0669-x PubMedPubMedCentralGoogle Scholar
  125. Strugatsky D, Zilberberg N, Stankiewicz M, Ilan N, Turkov M, Cohen L, Pelhate M, Gilles N, Gordon D, Gurevitz M (2005) Genetic polymorphism and expression of a highly potent scorpion depressant toxin enable refinement of the effects on insect Na channels and illuminate the key role of Asn-58. Biochemistry 44(25):9179–9187.  https://doi.org/10.1021/bi050235t PubMedGoogle Scholar
  126. Strutton B, Jaffe SRP, Pandhal J, Wright PC (2018) Producing a glycosylating Escherichia coli cell factory: The placement of the bacterial oligosaccharyl transferase pglB onto the genome. Biochem Biophys Res Commun 495(1):686–692.  https://doi.org/10.1016/j.bbrc.2017.11.023 PubMedGoogle Scholar
  127. Tao J, Zhou ZL, Wu B, Shi J, Chen XM, Ji YH (2014) Recombinant expression and functional characterization of martentoxin: a selective inhibitor for BK channel (α + β4). Toxins (Basel) 6(4):1419–1433.  https://doi.org/10.3390/toxins6041419 Google Scholar
  128. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211–222.  https://doi.org/10.1007/s00253-006-0465-8 PubMedGoogle Scholar
  129. Torabi E, Behdani M, Chafi MH, Moazzami R, Sabatier JM, Khalaj V, Shahbazzadeh D, Bagheri KP (2017) Characteristics and lethality of a novel recombinant dermonecrotic venom phospholipase D from Hemiscorpius lepturus. Toxins (Basel) 9(3).  https://doi.org/10.3390/toxins9030102
  130. Turkov M, Rashi S, Noam Z, Gordon D, Ben Khalifa R, Stankiewicz M, Pelhate M, Gurevitz M (1997) In vitro folding and functional analysis of an anti-insect selective scorpion depressant neurotoxin produced in Escherichia coli. Protein Expr Purif 10(1):123–131PubMedGoogle Scholar
  131. Uawonggul N, Sukprasert S, Incamnoi P, Patramanon R, Thammasirirak S, Preecharram S, Bunyatratchata W, Kuaprasert B, Daduang J, Daduang S (2014) Bacterial overexpression of recombinant heteroscorpine-1 (rHS-1), a toxin from Heterometrus laoticus scorpion venom: trends for antibacterial application and antivenom production. Biochem Genet 52(11-12):459–473.  https://doi.org/10.1007/s10528-014-9660-y PubMedGoogle Scholar
  132. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15(1-2):40–56.  https://doi.org/10.1016/j.drudis.2009.10.009 PubMedGoogle Scholar
  133. Vogl T, Hartner FS, Glieder A (2013) New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris. Curr Opin Biotechnol 24(6):1094–1101.  https://doi.org/10.1016/j.copbio.2013.02.024 PubMedPubMedCentralGoogle Scholar
  134. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E-coli. Science 298(5599):1790–1793.  https://doi.org/10.1126/science.298.5599.1790 PubMedGoogle Scholar
  135. Walsh G (2010) Post-translational modifications of protein biopharmaceuticals. Drug Discov Today 15(17-18):773–780PubMedGoogle Scholar
  136. Wang K, Yin SJ, Lu M, Yi H, Dai C, Xu XJ, Cao ZJ, Wu YL, Li WX (2006) Functional analysis of the alpha-neurotoxin, BmalphaTX14, derived from the Chinese scorpion, Buthus martensii Karsch. Biotechnol Lett 28(21):1767–1772.  https://doi.org/10.1007/s10529-006-9155-y PubMedGoogle Scholar
  137. Wang Y, Wang L, Cui Y, Song YB, Liu YF, Zhang R, Wu CF, Zhang JH (2011) Purification, characterization and functional expression of a new peptide with an analgesic effect from Chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU1). Biomed Chromatogr 25(7):801–807.  https://doi.org/10.1002/bmc.1519 PubMedGoogle Scholar
  138. Wang XM, Luo X, Guo ZY (2013) Recombinant expression and downstream processing of the disulfide-rich tumor-targeting peptide chlorotoxin. Exp Ther Med 6(4):1049–1053.  https://doi.org/10.3892/etm.2013.1234 PubMedPubMedCentralGoogle Scholar
  139. Wang X, Umetsu Y, Gao B, Ohki S, Zhu S (2015) Mesomartoxin, a new K(v)1.2-selective scorpion toxin interacting with the channel selectivity filter. Biochem Pharmacol 93(2):232–239.  https://doi.org/10.1016/j.bcp.2014.12.002 PubMedGoogle Scholar
  140. Williams KP, Gillespie JJ, Sobral BW, Nordberg EK, Snyder EE, Shallom JM, Dickerman AW (2010) Phylogeny of gammaproteobacteria. J Bacteriol 192(9):2305–2314.  https://doi.org/10.1128/JB.01480-09 PubMedPubMedCentralGoogle Scholar
  141. Wu JJ, He LL, Zhou Z, Chi CW (2002) Gene expression, mutation, and structure-function relationship of scorpion toxin BmP05 active on SK(Ca) channels. Biochemistry 41(8):2844–2849PubMedGoogle Scholar
  142. Xu L, Li T, Liu H, Yang F, Liang S, Cao Z, Li W, Wu Y (2014) Functional characterization of two novel scorpion sodium channel toxins from Lychas mucronatus. Toxicon 90:318–325.  https://doi.org/10.1016/j.toxicon.2014.08.075 PubMedGoogle Scholar
  143. Yang Z, Zhang Z (2018) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnol Adv 36(1):182–195.  https://doi.org/10.1016/j.biotechadv.2017.11.002 PubMedGoogle Scholar
  144. Yin J, Li G, Ren X, Herrler G (2007) Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J Biotechnol 127(3):335–347.  https://doi.org/10.1016/j.jbiotec.2006.07.012 PubMedGoogle Scholar
  145. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7(5):620–634.  https://doi.org/10.1002/biot.201100155 PubMedGoogle Scholar
  146. Yu M, Liu SL, Sun PB, Pan H, Tian CL, Zhang LH (2016) Peptide toxins and small-molecule blockers of BK channels. Acta Pharmacol Sin 37(1):56–66.  https://doi.org/10.1038/aps.2015.139 PubMedPubMedCentralGoogle Scholar
  147. Zeng XC, Wang S, Nie Y, Zhang L, Luo X (2012) Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: gaining insight into a new mechanism for the functional diversification of scorpion venom peptides. Peptides 33(1):44–51.  https://doi.org/10.1016/j.peptides.2011.11.012 PubMedGoogle Scholar
  148. Zhang AL, Luo JX, Zhang TY, Pan YW, Tan YH, Fu CY, Tu FZ (2009) Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol Biol Rep 36(6):1611–1619.  https://doi.org/10.1007/s11033-008-9359-4 PubMedGoogle Scholar
  149. Zhao R, Dai H, Qiu S, Li T, He Y, Ma Y, Chen Z, Wu Y, Li W, Cao Z (2011) SdPI, the first functionally characterized Kunitz-type trypsin inhibitor from scorpion venom. PLoS One 6(11):e27548.  https://doi.org/10.1371/journal.pone.0027548 PubMedPubMedCentralGoogle Scholar
  150. Zhu S, Gao B, Aumelas A, del Carmen Rodríguez M, Lanz-Mendoza H, Peigneur S, Diego-Garcia E, Martin-Eauclaire MF, Tytgat J, Possani LD (2010) MeuTXKbeta1, a scorpion venom-derived two-domain potassium channel toxin-like peptide with cytolytic activity. Biochim Biophys Acta 1804(4):872–883.  https://doi.org/10.1016/j.bbapap.2009.12.017 PubMedGoogle Scholar
  151. Zhu L, Peigneur S, Gao B, Tytgat J, Zhu S (2013) Two recombinant α-like scorpion toxins from Mesobuthus eupeus with differential affinity toward insect and mammalian Na(+) channels. Biochimie 95(9):1732–1740.  https://doi.org/10.1016/j.biochi.2013.05.009 PubMedGoogle Scholar
  152. Zilberberg N, Gordon D, Pelhate M, Adams ME, Norris TM, Zlotkin E, Gurevitz M (1996) Functional expression and genetic alteration of an alpha scorpion neurotoxin. Biochemistry 35(31):10215–10222.  https://doi.org/10.1021/bi9528309 PubMedGoogle Scholar
  153. Zornetta I, Scorzeto M, Mendes Dos Reis PV, De Lima ME, Montecucco C, Megighian A, Rossetto O (2017) Electrophysiological Characterization of the Antarease Metalloprotease from Tityus serrulatus Venom. Toxins (Basel) 9(3).  https://doi.org/10.3390/toxins9030081

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations