Applied Microbiology and Biotechnology

, Volume 102, Issue 15, pp 6393–6407 | Cite as

Back to the past: “find the guilty bug—microorganisms involved in the biodeterioration of archeological and historical artifacts”

  • Roberto Mazzoli
  • Maria Gabriella Giuffrida
  • Enrica PessioneEmail author


Microbial deterioration accounts for a significant percentage of the degradation processes that occur on archeological/historical objects and artworks, and identifying the causative agents of such a phenomenon should therefore be a priority, in consideration of the need to conserve these important cultural heritage items. Diverse microbiological approaches, such as microscopic evaluations, cultural methods, metabolic- and DNA-based techniques, as well as a combination of the aforementioned methods, have been employed to characterize the bacterial, archaeal, and fungal communities that colonize art objects. The purpose of the present review article is to report the interactions occurring between the microorganisms and nutrients that are present in stones, bones, wood, paper, films, paintings, and modern art specimens (namely, collagen, cellulose, gelatin, albumin, lipids, and hydrocarbons). Some examples, which underline that a good knowledge of these interactions is essential to obtain an in depth understanding of the factors that favor colonization, are reported. These data can be exploited both to prevent damage and to obtain information on historical aspects that can be decrypted through the study of microbial population successions.


Stone deterioration Syntrophic chains Wood decay Motion picture and photographic film degradation Xenobiotic degraders Amino acid racemization 



This work was supported financially by “Ricerca Locale-ex 60%” of the Turin University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abraham WR, Strömpl C, Meyer H, Lindholst S, Moore ER, Christ R, Tesar M (1999) Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int J Syst Evol Microbiol 49:1053–1073Google Scholar
  2. Abrusci C, Allen NS, Del Amo A, Edge M, Martín-González A (2004a) Biodegradation of motion picture film stocks. J film preservation 67:37Google Scholar
  3. Abrusci C, Martın-González A, Del Amo A, Corrales T, Catalina F (2004b) Biodegradation of type-B gelatine by bacteria isolated from cinematographic films. A viscometric study. Polym Degrad Stab 86:283–291CrossRefGoogle Scholar
  4. Abrusci C, Martín-González A, Del Amo A, Catalina F, Collado J, Platas G (2005) Isolation and identification of bacteria and fungi from cinematographic films. Int Biodeterior Biodegrad 56:58–68CrossRefGoogle Scholar
  5. Abrusci C, Marquina D, Santos A, Del Amo A, Corrales T, Catalina F (2007) A chemiluminescence study on degradation of gelatine: biodegradation by bacteria and fungi isolated from cinematographic films. J Photochem Photobiol A Chem 185:188–197CrossRefGoogle Scholar
  6. Bada JL, Protsch R (1973) Racemization reaction of aspartic acid and its use in dating fossil bones. Proc Natl Acad Sci 70:1331–1334CrossRefPubMedGoogle Scholar
  7. Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186CrossRefPubMedGoogle Scholar
  8. Bellezza S, Paradossi G, De Philippis R, Albertano P (2003) Leptolyngbya strains from Roman hypogea: cytochemical and physicochemical characterization of exopolysaccharides. J Appl Phycol 15:193–200CrossRefGoogle Scholar
  9. Björdal CG (2012a) Microbial degradation of waterlogged archaeological wood. J Cult Herit 13:S118–S122CrossRefGoogle Scholar
  10. Björdal CG (2012b) Evaluation of microbial degradation of shipwrecks in the Baltic Sea. Int Biodeterior Biodegrad 70:126–140CrossRefGoogle Scholar
  11. Björdal CG, Nilsson T, Daniel G (1999) Microbial decay of waterlogged archaeological wood found in Sweden applicable to archaeology and conservation. Int Biodeterior Biodegrad 43:63–73CrossRefGoogle Scholar
  12. Bomble YJ, Lin CY, Amore A, Wei H, Holwerda EK, Ciesielski PN, Donohoe BS, Decker SR, Lynd LR, Himmel ME (2017) Lignocellulose deconstruction in the biosphere. Curr Opin Chem Biol 41:61–70CrossRefPubMedGoogle Scholar
  13. Borrego S, Guiamet P, de Saravia SG, Batistini P, Garcia M, Lavin P, Perdomo I (2010) The quality of air at archives and the biodeterioration of photographs. Int Biodeterior Biodegrad 4:139–145CrossRefGoogle Scholar
  14. Breuker M, McNamara C, Young L, Perry T, Young A, Mitchell R (2003) Fungal growth on synthetic cloth from Apollo spacesuits. Ann Microbiol 53:47–54Google Scholar
  15. Bučková M, Puškárová A, Sclocchi MC, Bicchieri M, Colaizzi P, Pinzari F, Pangallo D (2014) Co-occurrence of bacteria and fungi and spatial partitioning during photographic materials biodeterioration. Polym Degrad Stab 108:1–11CrossRefGoogle Scholar
  16. Canhoto O, Pinzari F, Fanelli C, Magan N (2004) Application of electronic nose technology for the detection of fungal contamination in library paper. Int Biodeterior Biodegrad 54:303–309CrossRefGoogle Scholar
  17. Cappitelli F, Sorlini C (2008) Microorganisms attack synthetic polymers in items representing our cultural heritage. Appl Environ Microbiol 74:564–569CrossRefPubMedGoogle Scholar
  18. Cappitelli F, Principi P, Sorlini C (2006) Biodeterioration of modern materials in contemporary collections: can biotechnology help? Trends Biotechnol 24:350–354CrossRefPubMedGoogle Scholar
  19. Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C (2007) Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci Total Environ 385:172–181CrossRefPubMedGoogle Scholar
  20. Cappitelli F, Pasquariello G, Tarsitani G, Sorlini C (2010) Scripta manent? Assessing microbial risk to paper heritage. Trends Microbiol 18:538–542CrossRefPubMedGoogle Scholar
  21. Child AM (1995a) Microbial taphonomy of archaeological bone. Stud Conserv 40:19–30Google Scholar
  22. Child AM (1995b) Towards and understanding of the microbial decomposition of archaeological bone in the burial environment. J Archaeol Sci 22:165–174CrossRefGoogle Scholar
  23. Child AM, Gillard RD, Pollard AM (1993) Microbially-induced promotion of amino acid racemization in bone: isolation of the microorganisms and the detection of their enzymes. J Archaeol Sci 20:159–168CrossRefGoogle Scholar
  24. Collins MJ, Penkman KE, Rohland N, Shapiro B, Dobberstein RC, Ritz-Timme S, Hofreiter M (2009) Is amino acid racemization a useful tool for screening for ancient DNA in bone? Proc Biol Sci 276:2971–2977CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cutler NA, Viles HA, Ahmad S, McCabe S, Smith BJ (2013) Algal ‘greening’ and the conservation of stone heritage structures. Sci Total Environ 442:152–164CrossRefPubMedGoogle Scholar
  26. Daniel G, Nilsson T (1997) Developments in the study of soft rot and bacterial decay. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 37–62Google Scholar
  27. De Clerck E, De Vos P (2002) Study of the bacterial load in a gelatine production process focussed on Bacillus and related endosporeforming genera. Syst Appl Microbiol 25:611–617CrossRefPubMedGoogle Scholar
  28. Del Junco AS, Moreno DA, Ranninger C, Ortega-Calvo JJ, Sáiz-Jiménez C (1992) Microbial induced corrosion of metallic antiquities and works of art: a critical review. Int Biodeterior Biodegrad 29:367–375CrossRefGoogle Scholar
  29. Demarchi B, Collins M (2014) Amino acid racemization dating. In: Encyclopedia of scientific dating methods. Springer, Dordrecht, pp 1–22Google Scholar
  30. Di Martino P (2016) What about biofilms on the surface of stone monuments? The Open Conference Proc J 7:14–28CrossRefGoogle Scholar
  31. Essoussi I, Ghodhbane-Gtari F, Amairi H, Sghaier H, Jaouani A, Brusetti L, Daffonchio D, Boudabous A, Gtari M (2010) Esterase as an enzymatic signature of Geodermatophilaceae adaptability to Sahara desert stones and monuments. J Appl Microbiol 108:1723–1732CrossRefPubMedGoogle Scholar
  32. Ettenauer JD, Jurado V, Piñar G, Miller AZ, Santner M, Saiz-Jimenez C, Sterflinger K (2014) Halophilic microorganisms are responsible for the rosy discolouration of saline environments in three historical buildings with mural paintings. PLoS One 9:e103844CrossRefPubMedPubMedCentralGoogle Scholar
  33. Forlani G, Seves AM, Ciferri O (2000) A bacterial extracellular proteinase degrading silk fibroin. Int Biodeterior Biodegrad 46:271–275CrossRefGoogle Scholar
  34. Friedrich J, Zalar P, Mohorčič M, Klun U, Kržan A (2007) Ability of fungi to degrade synthetic polymer nylon-6. Chemosphere 67:2089–2095CrossRefPubMedGoogle Scholar
  35. Garcia-Guinea J, Cárdenes V, Martínez AT, Martínez M (2001) Fungal bioturbation paths in a compact disk. Naturwissenschaften 88:351–354CrossRefPubMedGoogle Scholar
  36. Ghiara G, Grande C, Ferrando S, Piccardo P (2018) The influence of Pseudomonas fluorescens on corrosion products of archaeological tin-bronze analogues. JOM 70:81–85CrossRefGoogle Scholar
  37. Giuffrida MG, Mazzoli R, Pessione E (2018) Back to the past. Deciphering cultural heritage secrets by protein identification. Appl Microbiol Biotechnol.
  38. Gtari M, Essoussi I, Maaoui R, Sghaier H, Boujmil R, Gury J, Pujic P, Brusetti L, Chouaia B, Crotti E, Daffonchio D, Boudabous A, Normand P (2012) Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol 80:566–577CrossRefPubMedGoogle Scholar
  39. Gurtner C, Heyrman J, Piñar G, Lubitz W, Swings J, Rölleke S (2000) Comparative analyses of the bacterial diversity on two different biodeteriorated wall paintings by DGGE and 16S rDNA sequence analysis. Int Biodeterior Biodegrad 46:229–239CrossRefGoogle Scholar
  40. Gutarowska B, Pietrzak K, Machnowski W, Miczarek JM (2017) Historical textiles—a review of microbial deterioration analysis and disinfection methods. Text Res J 87:2388–2404CrossRefGoogle Scholar
  41. Helms AC, Martiny AC, Hofman-Bang J, Ahring BK, Kilstrup M (2004) Identification of bacterial cultures from archaeological wood using molecular biological techniques. Int Biodeterior Biodegrad 53:79–88CrossRefGoogle Scholar
  42. Heyrman J, Mergaert J, Denys R, Swings J (1999) The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms. FEMS Microbiol Lett 181:55–62CrossRefPubMedGoogle Scholar
  43. Imperi F, Caneva G, Cancellieri L, Ricci MA, Sodo A, Visca P (2007) The bacterial aetiology of rosy discoloration of ancient wall paintings. Environ Microbiol 9:2894–2902CrossRefPubMedGoogle Scholar
  44. Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31:87–95CrossRefGoogle Scholar
  45. Kehoe DM, Grossman AR (1994) Complementary chromatic adaptation: photoperception to gene regulation. Semin Cell Biol 5:303–313CrossRefPubMedGoogle Scholar
  46. Kendall C, Eriksen AMH, Kontopoulos I, Collins MJ, Turner-Walker G (2018) Diagenesis of archaeological bone and tooth. Palaeogeogr Palaeoclimatol Palaeoecol 491:21–37CrossRefGoogle Scholar
  47. Kip N, van Veen JA (2015) The dual role of microbes in corrosion. ISME J 9:542–551CrossRefPubMedGoogle Scholar
  48. Krumbein WE, Urzì CE, Gehrmann C (1991) Biocorrosion and biodeterioration of antique and medieval glass. Geomicrobiol J 9:139–160CrossRefGoogle Scholar
  49. Laiz L, Piñar G, Lubitz W, Saiz-Jimenez C (2003) Monitoring the colonization of monuments by bacteria: cultivation versus molecular methods. Environ Microbiol 5:72–74CrossRefPubMedGoogle Scholar
  50. Lamprinou V, Mammali M, Katsifas EA, Pantazidou AI, Karagouni AD (2013) Phenotypic and molecular biological characterization of cyanobacteria from marble surfaces of treated and untreated sites of Propylaea (Acropolis, Athens). Geomicrobiol J 30:371–378CrossRefGoogle Scholar
  51. Landy ET, Mitchell JI, Hotchkiss S, Eaton RA (2008) Bacterial diversity associated with archaeological waterlogged wood: ribosomal RNA clone libraries and denaturing gradient gel electrophoresis (DGGE). Int Biodeterior Biodegrad 61:106–116CrossRefGoogle Scholar
  52. Lech T, Ziembinska-Buczynska A, Krupa N (2015) Analysis of microflora present on historical textiles with the use of molecular techniques. Int J Conserv Sci 6:137–144Google Scholar
  53. Marty F, Gueuné H, Malard E, Sánchez-Amaya JM, Sjögren L, Abbas B, Muyzer G (2014) Identification of key factors in accelerated low water corrosion through experimental simulation of tidal conditions: influence of stimulated indigenous microbiota. Biofouling 30:281–297CrossRefPubMedGoogle Scholar
  54. Marvasi M, Vedovato E, Balsamo C, Macherelli A, Dei L, Mastromei G, Perito B (2009) Bacterial community analysis on the Mediaeval stained glass window “Natività” in the Florence Cathedral. J Cult Herit 10:124–133CrossRefGoogle Scholar
  55. McCain JW, Mirocha CJ (1994) Screening computer diskettes and other magnetic media for susceptibility to fungal colonization. Int Biodeterior Biodegrad 33:255–268CrossRefGoogle Scholar
  56. McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3:445–451CrossRefGoogle Scholar
  57. Milanesi C, Baldi F, Vignani R, Ciampolini F, Faleri C, Cresti M (2006) Fungal deterioration of medieval wall fresco determined by analysing small fragments containing copper. Int Biodeterior Biodegrad 57:7–13CrossRefGoogle Scholar
  58. Neely AN, Maley MP (2000) Survival of enterococci and staphylococci on hospital fabrics and plastic. J Clin Microbiol 38:724–726PubMedPubMedCentralGoogle Scholar
  59. Nilsson T, Björdal C, Fällman E (2008) Culturing erosion bacteria: procedures for obtaining purer cultures and pure strains. Int Biodeterior Biodegrad 61:17–23CrossRefGoogle Scholar
  60. Oliveira VM, Lopes-Oliveira PF, Passarini MR, Menezes CB, Oliveira WR, Rocha AJ, Sette LD (2011) Molecular analysis of microbial diversity in corrosion samples from energy transmission towers. Biofouling 27:435–447CrossRefPubMedGoogle Scholar
  61. Palla F, Mancuso FP, Billeci N (2013) Multiple approaches to identify bacteria in archaeological waterlogged wood. J Cult Herit 14:e61–e64CrossRefGoogle Scholar
  62. Piccardo P, Mödlinger M, Ghiara G, Campodonico S, Bongiorno V (2013) Investigation on a “tentacle-like” corrosion feature on Bronze Age tin-bronze objects. Appl Phys A 113:1039–1047CrossRefGoogle Scholar
  63. Pietrzak K, Puchalski M, Otlewska A, Wrzosek H, Guiamet P, Piotrowska M, Gutarowska B (2017) Microbial diversity of pre-Columbian archaeological textiles and the effect of silver nanoparticles misting disinfection. J Cult Herit 23:138–147CrossRefGoogle Scholar
  64. Poinar HN, Höss M, Bada JL, Pääbo S (1996) Amino acid racemization and the preservation of ancient DNA. Science 272:864–866CrossRefPubMedGoogle Scholar
  65. Prijambada ID, Negoro S, Yomo T, Urabe I (1995) Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution. Appl Environ Microbiol 61:2020–2202PubMedPubMedCentralGoogle Scholar
  66. Radaelli A, Paganini M, Basavecchia V, Elli V, Neri M, Zanotto C, De Giuli Morghen C (2004) Identification, molecular biotyping and ultrastructural studies of bacterial communities isolated from two damaged frescoes of St Damian’s Monastery in Assisi. Lett Appl Microbiol 38:447–453CrossRefPubMedGoogle Scholar
  67. Rémazeilles C, Dheilly A, Sable S, Lanneluc I, Neff D, Refait P (2010a) Microbiologically influenced corrosion process of archaeological iron nails from the sixteenth century. Corros Eng Sci Technol 45:388–394CrossRefGoogle Scholar
  68. Rémazeilles C, Saheb M, Neff D, Guilminot E, Tran K, Bourdoiseau JA, Sabot R, Jeannin M, Matthiesen H, Dillmann P, Refait P (2010b) Microbiologically influenced corrosion of archaeological artefacts: characterisation of iron(II) sulfides by Raman spectroscopy. J Raman Spectrosc 41:1425–1433CrossRefGoogle Scholar
  69. Rölleke S, Gurtner C, Drewello U, Drewello R, Lubitz W, Weissmann R (1999) Analysis of bacterial communities on historical glass by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. J Microbiol Methods 36:107–114Google Scholar
  70. Rölleke S, Muyzer G, Wawer C, Wanner G, Lubitz W (1996) Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 62:2059–2065PubMedPubMedCentralGoogle Scholar
  71. Rowe L, Howard GT (2002) Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. Int Biodeterior Biodegrad 50:33–40CrossRefGoogle Scholar
  72. Saarela M, Alakomi HL, Suihko ML, Maunuksela L, Raaska L, Mattila-Sandholm T (2004) Heterotrophic microorganisms in air and biofilm samples from Roman catacombs, with special emphasis on actinobacteria and fungi. Int Biodeterior Biodegrad 54:27–37CrossRefGoogle Scholar
  73. Sakai K, Yamauchi T, Nakasu F, Ohe T (1996) Biodegradation of cellulose acetate by Neisseria sicca. Biosci Biotechnol Biochem 60:1617–1622CrossRefPubMedGoogle Scholar
  74. Sclocchi MC, Damiano E, Matè D, Colaizzi P, Pinzari F (2013) Fungal biosorption of silver particles on 20th-century photographic documents. Int Biodeterior Biodegrad 84:367–371CrossRefGoogle Scholar
  75. Seal KJ (1988) The biodegradation of naturally occurring and synthetic plastic polymers. Biodeterior Abstr 2:296–317Google Scholar
  76. Seves A, Romano M, Maifreni T, Sora S, Ciferri O (1998) The microbial degradation of silk: a laboratory investigation. Int Biodeterior Biodegrad 42:203–211CrossRefGoogle Scholar
  77. Singh AP (2012) A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. J Cult Herit 13:S16–S20CrossRefGoogle Scholar
  78. Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24:47–55CrossRefGoogle Scholar
  79. Szostak-Kotow J (2004) Biodeterioration of textiles. Int Biodeterior Biodegrad 53:165–170CrossRefGoogle Scholar
  80. Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8:169–180PubMedGoogle Scholar
  81. Villa F, Pitts B, Lauchnor E, Cappitelli F, Stewart PS (2015) Development of a laboratory model of a phototroph-heterotroph mixed-species biofilm at the stone/air Interface. Front Microbiol 6:1251CrossRefPubMedPubMedCentralGoogle Scholar
  82. Violetta MR, Mazzoli R, Barello C, Fattori P, Giuffrida MG, Pessione E (2014) Combining LC-MS/MS, PMF and N-terminal amino acid sequencing for multiplexed characterization of a bacterial surfactant glycoprotein biosynthesized by Acinetobacter radioresistens S13. RSC Adv 4:10918–10927CrossRefGoogle Scholar
  83. Wadsworth C, Procopio N, Anderung C, Carretero JM, Iriarte E, Valdiosera C, Elburg R, Penkman K, Buckley M (2017) Comparing ancient DNA survival and proteome content in 69 archaeological cattle tooth and bone samples from multiple European sites. J Proteome 158:1–8CrossRefGoogle Scholar
  84. Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS (2000) Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol 66:3194–3200CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità di TorinoTorinoItaly
  2. 2.CNR-ISPATorinoItaly

Personalised recommendations