Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 15, pp 6493–6502 | Cite as

Improving the acetic acid tolerance and fermentation of Acetobacter pasteurianus by nucleotide excision repair protein UvrA

  • Yu Zheng
  • Jing Wang
  • Xiaolei Bai
  • Yangang Chang
  • Jun Mou
  • Jia Song
  • Min Wang
Biotechnologically relevant enzymes and proteins

Abstract

Acetic acid bacteria (AAB) are widely used in acetic acid fermentation due to their remarkable ability to oxidize ethanol and high tolerance against acetic acid. In Acetobacter pasteurianus, nucleotide excision repair protein UvrA was up-regulated 2.1 times by acetic acid when compared with that without acetic acid. To study the effects of UvrA on A. pasteurianus acetic acid tolerance, uvrA knockout strain AC2005-ΔuvrA, uvrA overexpression strain AC2005 (pMV24-uvrA), and the control strain AC2005 (pMV24), were constructed. One percent initial acetic acid was almost lethal to AC2005-ΔuvrA. However, the biomass of the UvrA overexpression strain was higher than that of the control under acetic acid concentrations. After 6% acetic acid shock for 20 and 40 min, the survival ratios of AC2005 (pMV24-uvrA) were 2 and 0.12%, respectively; however, they were 1.5 and 0.06% for the control strain AC2005 (pMV24). UvrA overexpression enhanced the acetification rate by 21.7% when compared with the control. The enzymes involved in ethanol oxidation and acetic acid tolerance were up-regulated during acetic acid fermentation due to the overexpression of UvrA. Therefore, in A. pasteurianus, UvrA could be induced by acetic acid and is related with the acetic acid tolerance by protecting the genome against acetic acid to ensure the protein expression and metabolism.

Keywords

Acetic acid tolerance Acetobacter pasteurianus Nucleotide excision repair protein Acetic acid fermentation Genome damage 

Notes

Acknowledgements

The authors would like to acknowledge the Mizkan Group Corporation, Japan, for their plasmid pMV24 and Dr. Wei Liujing (East China University of Science and Technology, China) for gifting the plasmids pSUP202 and pRK2013.

Funding information

This work was supported by the National Natural Science Foundation of China (31201406, 31671851), Tianjin Municipal Science and Technology Commission (16YFZCNC00650, 17PTGCCX00190), Rural Affairs Committee of Tianjin (201701180), Program for Changjiang Scholars and the Innovative University Research Team (IRT15R49), and the Innovative Research Team of Tianjin Municipal Education Commission (TD13-5013).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Akiko OK, Wang Y, Sachiko K, Kenji T, Yukimichi K, Fujiharu Y (2002) Cloning and characterization of groESL operon in Acetobacter aceti. J Biosci Bioeng 94:140–147.  https://doi.org/10.1016/S1389-1723(02)80134-7 CrossRefGoogle Scholar
  2. Brennan L, Morris G, Wasson G, Hannigan B, Barnett Y (2000) The effect of vitamin C or vitamin E supplementation on basal and H2O2-induced DNA damage in human lymphocytes. Brit J Nutr 84(2):195–202.  https://doi.org/10.1017/S0007114500001422 CrossRefPubMedGoogle Scholar
  3. Cappa F, Cattivelli D, Cocconcelli P (2005) The uvrA gene is involved in oxidative and acid stress responses in Lactobacillus helveticus CNBL1156. Res Microbiol 156(10):1039–1047.  https://doi.org/10.1016/j.resmic.2005.06.003 CrossRefPubMedGoogle Scholar
  4. Cotter P, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol R 67(3):429–453.  https://doi.org/10.1128/mmbr.67.3.429-453.2003 CrossRefGoogle Scholar
  5. De Laat W, Jaspers N, Hoeijmakers J (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13:768–785.  https://doi.org/10.1101/gad.13.7.768 CrossRefPubMedGoogle Scholar
  6. Doolittle R, Johnson M, Husain I, Houten B, Thomas D, Sancar A (1986) Domainal evolution of a prokaryotic DNA repair protein and its relationship to active-transport proteins. Nature 323:451–453.  https://doi.org/10.1038/323451a0 CrossRefPubMedGoogle Scholar
  7. Drouin R, Gao S, Holmquist G (1996) Agarose gel electrophoresis for DNA damage analysis. Technologies for Detection of DNA Damage & Mutations. Springer, Boston, pp 37–43.  https://doi.org/10.1007/978-1-4899-0301-3_337-43
  8. Fukaya M, Takemura H, Okumura H, Kawamura Y, Horinouchi S, Beppu T (1990) Cloning of genes responsible for acetic acid resistance in Acetobacter aceti. J Bacteriol 172:2096–2104 http://jb.asm.org/content/172/4/2096 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fukaya M, Tayama K, Tamaki T, Tagami H, Okumura H, Kawamura Y (1989) Cloning of the membrane-bound aldehyde dehydrogenase gene of Acetobacter polyoxogenes and improvement of acetic acid production by use of the cloned gene. Appl Environ Microbiol 55:171–176 http://aem.asm.org/content/55/1/171 PubMedPubMedCentralGoogle Scholar
  10. Gavrieli Y, Sherman Y, Ben-Sasson S (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. Cell Bio 119:493–501.  https://doi.org/10.1083/jcb.119.3.493 CrossRefGoogle Scholar
  11. Greer S, Zamenhof S (1962) Studies on depurination of DNA by heat. J Mol Biol 4(3):123–141.  https://doi.org/10.1016/S0022-2836(62)80046-1 CrossRefPubMedGoogle Scholar
  12. Grinholc M, Rodziewicz A, Forys K, Rapackazdonczyk A, Kawiak A, Domachowska A, Golunski G, Wolz C, Mesak L, Becker K (2015) Fine-tuning recA expression in Staphylococcus aureus for antimicrobial photoinactivation: importance of photo-induced DNA damage in the photoinactivation mechanism. Appl Microbiol Biotechnol 99(21):9161–9176.  https://doi.org/10.1007/s00253-015-6863-z CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hahn K, Faustoferri R, Quivey J (1999) Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH. Mol Microbiol 31:1489–1498.  https://doi.org/10.1046/j.1365-2958.1999.01292.x
  14. Hattori R, Yamada K, Kikuchi M, Hirano S, Yoshida N (2011) Intramolecular carbon isotope distribution of acetic acid in vinegar. J Agric Food Chem 59:9049–9053.  https://doi.org/10.1021/jf200227e CrossRefPubMedGoogle Scholar
  15. Ishikawa M, Okamoto-Kainuma A, Jochi T, Suzuki I, Matsui K, Kaga T, Koizumi Y (2010) Cloning and characterization of grpE in Acetobacter pasteurianus NBRC 3283. J Biosci Bioeng 109(1):25–31.  https://doi.org/10.1016/j.jbiosc.2009.07.008 CrossRefPubMedGoogle Scholar
  16. Kuper J, Kisker C (2012) Damage recognition in nucleotide excision DNA repair. Curr Opin Struct Biol 22(1):88–93.  https://doi.org/10.1016/j.sbi.2011.12.002 CrossRefPubMedGoogle Scholar
  17. Mullins E, Francois J, Kappock T (2008) A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol 190(14):4933–4940.  https://doi.org/10.1128/JB.00405-08 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Nakano S, Fukaya M (2008) Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. Int J Food Microbiol 125(1):54–59.  https://doi.org/10.1016/j.ijfoodmicro.2007.05.015 CrossRefPubMedGoogle Scholar
  19. Nie Z, Zheng Y, Du H, Xie S, Wang M (2015) Dynamics and diversity of microbial community succession in traditional fermentation of Shanxi aged vinegar. Food Microbiol 47:62–68.  https://doi.org/10.1016/j.fm.2014.11.006 CrossRefPubMedGoogle Scholar
  20. Okamoto-Kainuma A, Yan W, Fukaya M, Tukamoto Y, Ishikawa M, Koizumi Y (2004) Cloning and characterization of the dnaKJ operon in Acetobacter aceti. J Biosci Bioeng 97:339–342.  https://doi.org/10.1016/S1389-1723(04)70216-9
  21. Poorbagher H, Moghaddam M, Eagderi S, Farahmand H (2016) Estimating the DNA strand breakage using a fuzzy inference system and agarose gel electrophoresis, a case study with toothed carp Aphanius sophiae exposed to cypermethrin. Ecotoxicology 25(5):1040–1046.  https://doi.org/10.1007/s10646-016-1647-5 CrossRefPubMedGoogle Scholar
  22. Ribeiro G, Corte-Real M, Johansson B (2006) Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Biol Cell 17(10):4584–4591.  https://doi.org/10.1091/mbc.E06-05-0475 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sambrook J, Russell D (2016) Molecular cloning: a laboratory manual (third edition). Cold Spring Harbor Laboratory 49:895–909 http://www.openisbn.org/download/0879695765 Google Scholar
  24. Sancar A, Rupp W (1983) A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell 33:249–260.  https://doi.org/10.1016/0092-8674(83)90354-9 CrossRefPubMedGoogle Scholar
  25. Sancar A, Tang M (1993) Nucleotide excision repair. Photochem Photobiol 57(5):905–921.  https://doi.org/10.1111/j.1751-1097.1993.tb09233.x CrossRefPubMedGoogle Scholar
  26. Sengun I, Karabiyikli S (2011) Importance of acetic acid bacteria in food industry. Food Control 22(5):647–656.  https://doi.org/10.1016/j.foodcont.2010.11.008 CrossRefGoogle Scholar
  27. Solieri L, Giudici P (2009) Vinegars of the world. Springer, Milan, pp 1–16.  https://doi.org/10.1007/978-88-470-0866-3_1 CrossRefGoogle Scholar
  28. Trcek J, Jernejc K, Matsushita K (2007) The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression. Extremophiles 11(4):627–635.  https://doi.org/10.1007/s00792-007-0077-y CrossRefPubMedGoogle Scholar
  29. Trcek J, Toyama H, Czuba J, Misiewicz A, Matsushita K (2006) Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol 70(3):366–373.  https://doi.org/10.1007/s00253-005-0073-z CrossRefPubMedGoogle Scholar
  30. Van de Guchte M, , Serror P, Chervaux C, Smokvina T, Ehrlich S, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82(1–4):187 doi: https://doi.org/10.1023/A:1020631532202, 216CrossRefPubMedGoogle Scholar
  31. Van Houten B, Croteau D, DellaVecchia M, Wang H, Kisker C (2005) ‘Close-fitting sleeves’: DNA damage recognition by the UvrABC nuclease system. Mutat Res 577(1–2):92–117.  https://doi.org/10.1016/j.mrfmmm.2005.03.013 CrossRefPubMedGoogle Scholar
  32. Verhoeven E, Wyman C, Moolenaar G, Goosen N (2002) The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. EMBO J 21:4196–4205.  https://doi.org/10.1093/emboj/cdf396 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wang B, Shao Y, Chen T, Chen W, Chen F (2015) Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Sci Rep 5:18330.  https://doi.org/10.1038/srep18330 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wei L, Zhu D, Zhou J, Zhang J, Zhu K, Du L, Hua Q (2014) Revealing in vivo glucose utilization of Gluconobacter oxydans 621H Δmgdh strain by mutagenesis. Microbiol Res 169(5–6):469–475.  https://doi.org/10.1016/j.micres.2013.08.002 CrossRefPubMedGoogle Scholar
  35. Xia K, Zang N, Zhang J, Zhang H, Li Y, Liu Y, Feng W, Liang X (2016) New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis. Int J Food Microbiol 238:241–251.  https://doi.org/10.1016/j.ijfoodmicro.2016.09.016 CrossRefPubMedGoogle Scholar
  36. Yamamoto N, Kato R, Kuramitsu S (1996) Cloning, sequencing and expression of the uvrA gene from an extremely thermophilic bacterium, Thermus thermophilus HB8. Gene 171:103–106.  https://doi.org/10.1016/0378-1119(96)00052-2 CrossRefPubMedGoogle Scholar
  37. Yin H, Zhang R, Xia M, Bai X, Mou J, Zheng Y, Wang M (2017) Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus. Microb Cell Factories 16:109–115.  https://doi.org/10.1186/s12934-017-0717-6 CrossRefGoogle Scholar
  38. Zheng Y, Chen X, Wang J, Yin H, Wang L, Wang M (2015) Expression of gene uvrA from Acetobacter pasteurianus and its tolerance to acetic acid in Escherichia coli. In: Zhang TC, Nakajima M (eds) Advances in Applied Biotechnology. Lecture Notes in Electrical Engineering, vol 333. Springer, Berlin, Heidelberg, pp 163–169.  https://doi.org/10.1007/978-3-662-46318-5_18 CrossRefGoogle Scholar
  39. Zheng Y, Zhang R, Yin H, Bai X, Chang Y, Xia M, Wang M (2017) Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions. Appl Microbiol Biotechnol 101:7007–7016.  https://doi.org/10.1007/s00253-017-8453-8 CrossRefPubMedGoogle Scholar
  40. Zhu K, Lu L, Wei L, Wei D, Imanaka T, Hua Q (2011) Modification and evolution of Gluconobacter oxydans for enhanced growth and biotransformation capabilities at low glucose concentration. Mol Biotechnol 49(1):56–64.  https://doi.org/10.1007/s12033-011-9378-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu Zheng
    • 1
  • Jing Wang
    • 1
  • Xiaolei Bai
    • 1
  • Yangang Chang
    • 1
  • Jun Mou
    • 1
  • Jia Song
    • 1
  • Min Wang
    • 1
  1. 1.State Key Laboratory of Food Nutrition and Safety; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control; College of BiotechnologyTianjin University of Science & TechnologyTianjinPeople’s Republic of China

Personalised recommendations