Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 13, pp 5775–5783 | Cite as

Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120

  • Luisana Avilan
  • Baptiste Roumezi
  • Véronique Risoul
  • Christophe Sébastien Bernard
  • Arlette Kpebe
  • Mayssène Belhadjhassine
  • Marc Rousset
  • Myriam Brugna
  • Amel Latifi
Bioenergy and biofuels

Abstract

The conversion of solar energy into hydrogen represents a highly attractive strategy for the production of renewable energies. Photosynthetic microorganisms have the ability to produce H2 from sunlight but several obstacles must be overcome before obtaining a sustainable and efficient H2 production system. Cyanobacteria harbor [NiFe] hydrogenases required for the consumption of H2. As a result, their H2 production rates are low, which makes them not suitable for a high yield production. On the other hand, [FeFe] enzymes originating from anaerobic organisms such as Clostridium exhibit much higher H2 production activities, but their sensitivity to O2 inhibition impairs their use in photosynthetic organisms. To reach such a goal, it is therefore important to protect the hydrogenase from O2. The diazotrophic filamentous cyanobacteria protect their nitrogenases from O2 by differentiating micro-oxic cells called heterocysts. Producing [FeFe] hydrogenase in the heterocyst is an attractive strategy to take advantage of their potential in a photosynthetic microorganism. Here, we present a biological engineering approach for producing an active [FeFe] hydrogenase (HydA) from Clostridium acetobutylicum in the heterocysts of the filamentous cyanobacterium Nostoc PCC7120. To further decrease the O2 amount inside the heterocyst, the GlbN cyanoglobin from Nostoc commune was coproduced with HydA in the heterocyst. The engineered strain produced 400 μmol-H2 per mg Chlorophyll a, which represents 20-fold the amount produced by the wild type strain. This result is a clear demonstration that it is possible to associate oxygenic photosynthesis with H2 production by an O2-sensitive hydrogenase.

Keywords

Clostridium acetobutylicum Cyanobacteria Cyanoglobin Heterocyst Hydrogen Nostoc 

Notes

Acknowledgments

The authors thank Cheng-Cai Zhang for helpful discussions and Regine Lebrun from the “Plateforme Protéomique, FR3479 IMM” for the mass spectrometry analysis. We thank Jessica Blanc for revising the English manuscript. This research was supported by the “Agence Nationale pour la Recherche Scientifique” (ANR-13-BIME-0001).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Boughanemi S, Lyonnet J, Infossi P, Bauzan M, Kosta A, Lignon S, Giudici-Orticoni MT, Guiral M (2016) Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus. FEMS Microbiol Lett 363(15).  https://doi.org/10.1093/femsle/fnw156
  2. Chen CC, Lin CY, Chang JS (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. App Microbiol Biotechnol 57(1–2):56–64Google Scholar
  3. Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci U S A 108(10):3941–3946.  https://doi.org/10.1073/pnas.1016026108 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Elhai J, Wolk CP (1990) Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena. EMBO J 9(10):3379–3388PubMedCrossRefGoogle Scholar
  5. Fonseca A, Assaf E (2004) Production of the hydrogen by methane steam reforming over nickel catalysts prepared from hydrotalcite precursors. J Power Sources 142:154–159CrossRefGoogle Scholar
  6. Gärtner K, Lechno-Yossef S, Cornish AJ, Wolk CP, Hegg EL (2012) Expression of Shewanella oneidensis MR-1 [FeFe]-hydrogenase genes in Anabaena sp. strain PCC 7120. Appl Environ Microbiol 78(24):8579–8586.  https://doi.org/10.1128/AEM.01959-12 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Golden JW, Whorff LL, Wiest DR (1991) Independent regulation of nifHDK operon transcription and DNA rearrangement during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 173(22):7098–7105CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gutekunst K, Chen X, Schreiber K, Kaspar U, Makam S, Appel J (2014) The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. J Biol Chem 289(4):1930–1937.  https://doi.org/10.1074/jbc.M113.526376 CrossRefPubMedGoogle Scholar
  9. Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227(2):397–407.  https://doi.org/10.1007/s00425-007-0626-8 CrossRefPubMedGoogle Scholar
  10. Hill DR, Belbin TJ, Thorsteinsson MV, Bassam D, Brass S, Ernst A, Boger P, Paerl H, Mulligan ME, Potts M (1996) GlbN (cyanoglobin) is a peripheral membrane protein that is restricted to certain Nostoc spp. J Bacteriol 178(22):6587–6598CrossRefPubMedPubMedCentralGoogle Scholar
  11. Houchins JP, Burris RH (1981) Light and dark reactions of the uptake hydrogenase in Anabaena 7120. Plant Physiol 68(3):712–716CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jeong JY, Yim HS, Ryu JY, Lee HS, Lee JH, Seen DS, Kang SG (2012) One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78(15):5440–5443.  https://doi.org/10.1128/AEM.00844-12 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jones KM, Buikema WJ, Haselkorn R (2003) Heterocyst-specific expression of patB, a gene required for nitrogen fixation in Anabaena sp. strain PCC 7120. J Bacteriol 185(7):2306–2314CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8(5):205–213 227-53CrossRefPubMedGoogle Scholar
  15. King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188(6):2163–2172.  https://doi.org/10.1128/JB.188.6.2163-2172.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lentini R, Forlin M, Martini L, Del Bianco C, Spencer AC, Torino D, Mansy SS (2013) Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology. ACS synt Biol 2(9):482–489.  https://doi.org/10.1021/sb400003y CrossRefGoogle Scholar
  17. Lockau W, Peterson RB, Wolk CP, Burris RH (1978) Modes of reduction of nitrogen in heterocysts isolated from Anabaena species. BBA 502(2):298–308PubMedGoogle Scholar
  18. Muro-Pastor AM (2014) The heterocyst-specific NsiR1 small RNA is an early marker of cell differentiation in cyanobacterial filaments. mBio 5(3):e01079–e01014.  https://doi.org/10.1128/mBio.01079-14 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Muro-Pastor AM, Hess WR (2012) Heterocyst differentiation: from single mutants to global approaches. Trends Microbiol 20(11):548–557.  https://doi.org/10.1016/j.tim.2012.07.005 CrossRefPubMedGoogle Scholar
  20. Noar J, Loveless T, Navarro-Herrero JL, Olson JW, Bruno-Barcena JM (2015) Aerobic hydrogen production via Nitrogenase in Azotobacter vinelandii CA6. Appl Environ Microbiol 81(13):4507–4516.  https://doi.org/10.1128/AEM.00679-15 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nolling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183(16):4823–4838.  https://doi.org/10.1128/JB.183.16.4823-4838.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MW (2015) [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. BBA 1853(6):1350–1369.  https://doi.org/10.1016/j.bbamcr.2014.11.021 PubMedCrossRefGoogle Scholar
  23. Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279(24):25711–25720.  https://doi.org/10.1074/jbc.M403206200 CrossRefPubMedGoogle Scholar
  24. Potts M, Angeloni SV, Ebel RE, Bassam D (1992) Myoglobin in a cyanobacterium. Science 256(5064):1690–1691CrossRefPubMedGoogle Scholar
  25. Razquin P, Schmitz S, Fillat MF, Peleato ML, Bohme H (1994) Transcriptional and translational analysis of ferredoxin and flavodoxin under iron and nitrogen stress in Anabaena sp. strain PCC 7120. J Bacteriol 176(23):7409–7411CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sellstedt A, Lindblad P (1990) Activities, occurrence, and localization of hydrogenase in free-living and symbiotic frankia. Plant Physiol 92(3):809–815CrossRefPubMedPubMedCentralGoogle Scholar
  27. Tamagnini P, Leitao E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31(6):692–720.  https://doi.org/10.1111/j.1574-6976.2007.00085.x CrossRefPubMedGoogle Scholar
  28. Thorneley RN, Ashby GA (1989) Oxidation of nitrogenase iron protein by dioxygen without inactivation could contribute to high respiration rates of Azotobacter species and facilitate nitrogen fixation in other aerobic environments. Biochem J 261(1):181–187CrossRefPubMedPubMedCentralGoogle Scholar
  29. Thorsteinsson MV, Bevan DR, Ebel RE, Weber RE, Potts M (1996) Spectroscopical and functional characterization of the hemoglobin of Nostoc commune (UTEX 584 cyanobacterial). BBA 1292(1):133–139PubMedGoogle Scholar
  30. Ungerer JL, Pratte BS, Thiel T (2010) RNA Processing of Nitrogenase Transcripts in the Cyanobacterium Anabaena variabilis. J Bacteriol 192(13):3311-3320Google Scholar
  31. Valladares A, Herrero A, Pils D, Schmetterer G, Flores E (2003) Cytochrome c oxidase genes required for nitrogenase activity and diazotrophic growth in Anabaena sp. PCC 7120. Mol Microbiol 47(5):1239–1249CrossRefPubMedGoogle Scholar
  32. Vellanoweth RL, Rabinowitz JC (1992) The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 6(9):1105–1114CrossRefPubMedGoogle Scholar
  33. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chemical Rev 107(10):4206–4272.  https://doi.org/10.1021/cr050196r CrossRefGoogle Scholar
  34. Wang B, Wang J, Zhang W, Meldrum DR (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3:344.  https://doi.org/10.3389/fmicb.2012.00344 PubMedCrossRefPubMedCentralGoogle Scholar
  35. Xu WL, Jeanjean R, Liu YD, Zhang CC (2003) pkn22 (alr2502) encoding a putative Ser/Thr kinase in the cyanobacterium Anabaena sp. PCC 7120 is induced by both iron starvation and oxidative stress and regulates the expression of isiA. FEBS Lett 553(1–2):179–182CrossRefPubMedGoogle Scholar
  36. Zhao W, Ye Z, Zhao J (2007) RbrA, a cyanobacterial rubrerythrin, functions as a FNR-dependent peroxidase in heterocysts in protection of nitrogenase from damage by hydrogen peroxide in Anabaena sp. PCC 7120. Mol Microbiol 66(5):1219–1230.  https://doi.org/10.1111/j.1365-2958.2007.05994.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Luisana Avilan
    • 1
  • Baptiste Roumezi
    • 2
  • Véronique Risoul
    • 2
  • Christophe Sébastien Bernard
    • 2
  • Arlette Kpebe
    • 1
  • Mayssène Belhadjhassine
    • 1
  • Marc Rousset
    • 1
  • Myriam Brugna
    • 1
  • Amel Latifi
    • 2
  1. 1.Aix Marseille Univ, CNRS, BIP, UMR 7281, Laboratoire de Bioénergétique et Ingénierie des ProtéinesMarseille Cedex 20France
  2. 2.Aix Marseille Univ, CNRS, LCB, UMR 7283, Laboratoire de Chimie BactérienneMarseille Cedex 20France

Personalised recommendations