Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 13, pp 5419–5425 | Cite as

Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing

  • Yujia Jiang
  • Ting Zhang
  • Jiasheng Lu
  • Peter Dürre
  • Wenming Zhang
  • Weiliang Dong
  • Jie Zhou
  • Min Jiang
  • Fengxue Xin
Mini-Review

Abstract

Biobutanol can be indigenously synthesized by solventogenic Clostridium species; however, these microorganisms possess inferior capability of utilizing abundant and renewable organic wastes, such as starch, lignocellulose, and even syngas. The common strategy to achieve direct butanol production from these organic wastes is through genetic modification of wild-type strains. However, due to the complex of butanol synthetic and hydrolytic enzymes expression systems, the recombinants show unsatisfactory results. Recently, setting up microbial co-culturing systems became more attractive, as they could not only perform more complicated tasks, but also endure changeable environments. Hence, this mini-review comprehensively summarized the state-of-the-art biobutanol production from different substrates by using microbial co-culturing systems. Furthermore, strategies regarding establishment principles of microbial co-culturing systems were also analyzed and compared.

Keywords

Biobutanol Microbial co-culture Starch Lignocellulose Syngas Consolidated bioprocessing 

Notes

Acknowledgements

This work was supported by the Jiangsu Province Natural Science Foundation for Youths (No. BK20170993, BK20170997); the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture; the Project of State Key Laboratory of Materials-Oriented Chemical Engineering (KL16-08); the Key Science and Technology Project of Jiangsu Province (BE2016389); the Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, China; and the National Natural Science Foundation of China (No. 21706125, No. 21727818, No. 21706124, No. 31700092).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animals performed by any of the authors.

References

  1. Diender M, Stams AJM, Sousa DZ (2016) Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas. Biotechnol Biofuels. 9(1):82CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ding MZ, Song H, Wang EX, Liu Y, Yuan YJ (2016) Design and construction of synthetic microbial consortia in China. Synth Syst Biotechnol 1(4):230–235CrossRefPubMedPubMedCentralGoogle Scholar
  3. Dürre P (2016) Butanol formation from gaseous substrates. FEMS Microbiol Lett 363:fnw040.  https://doi.org/10.1093/femsle/fnw040 CrossRefPubMedGoogle Scholar
  4. Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72CrossRefPubMedGoogle Scholar
  5. Gaida SM, Liedtke A, Jentges AHW, Engels B, Jennewein S (2016) Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microb Cell Factories 15(1):6CrossRefGoogle Scholar
  6. Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S (2011) Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnol J 6(11):1348–1357CrossRefPubMedGoogle Scholar
  7. Huang W, Ramey S, Yang S (2004) Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Appl Biochem Biotechnol 115:887–898CrossRefGoogle Scholar
  8. Jiang L, Wang J, Liang S, Wang X, Cen P, Xu Z (2009) Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresour Technol 100(13):3403–3409CrossRefPubMedGoogle Scholar
  9. Jiang YJ, Chen TP, Dong WL, Zhang M, Zhang WM, Wu H, Ma JF, Jiang M, Xin FX (2017a) The draft genome sequence of Clostridium beijerinckii NJP7, a unique bacterium capable of producing isopropanol-butanol from hemicellulose through consolidated bioprocessing. Curr Microbiol 75(3):305–308CrossRefPubMedGoogle Scholar
  10. Jiang YJ, Xin FX, Lu JS, Dong WL, Zhang WM, Zhang M, Wu H, Ma JF, Jiang M (2017b) State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour Technol 245:1498–1506CrossRefPubMedGoogle Scholar
  11. Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524PubMedPubMedCentralGoogle Scholar
  12. Kiyoshi K, Furukawa M, Seyama T, Kadokura T, Nakazato A, Nakayama S (2015) Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum, and Clostridium saccharoperbutylacetonicum. Bioresour Technol 186:325–328CrossRefPubMedGoogle Scholar
  13. Lopez-Contreras A, Smidt H, van der Oost J, Claassen P, Mooibroek H, de Vos W (2001) Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production. Appl Environ Microbiol 67:5127–5133CrossRefPubMedPubMedCentralGoogle Scholar
  14. Luo HZ, Ge LB, Zhang JZ, Zhao YL, Ding J, Li ZG, He ZN, Chen R, Shi ZP (2015) Enhancing butanol production under the stress environments of co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous butyrate addition. PLoS One 10(10):e0141160CrossRefPubMedPubMedCentralGoogle Scholar
  15. Luo H, Zeng Q, Han S, Wang Z, Dong Q, Bi Y, Zhao Y (2017) High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. World J Microbiol Biotechnol 33(4):76CrossRefPubMedGoogle Scholar
  16. Mai S, Wang G, Wu P, Gu C, Liu H, Zhang J, Wang G (2016) Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in co-culture for butanol production under non-anaerobic conditions. Biotechnol Appl Biochem 64(5):719–726CrossRefGoogle Scholar
  17. Michel-Savin D, Marchal R, Vandecasteele JP (1990a) Butyrate production in continuous culture of Clostridium tyrobutyricum: effect of end-product inhibition. Appl Microbiol Biotechnol 33(2):127–131CrossRefGoogle Scholar
  18. Michel-Savin D, Marchal R, Vandecasteele JP (1990b) Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum. Appl Microbiol Biotechnol 32(4):387–392CrossRefGoogle Scholar
  19. Mingardon F, Perret S, Belaich A, Tardif C, Belaich J, Fierobe H (2005) Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 71:1215–1222CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mingardon F, Chanal A, Tardif C, Fierobe H (2011) The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 77:2831–2838CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mock J, Zheng Y, Mueller AP, Ly S, Tran L, Segovia S, Nagaraju S, Köpke M, Dürre P, Thauer RK (2015) Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. JBacteriol 197(18):2965–2980CrossRefGoogle Scholar
  22. Nakayama S, Kiyoshi K, Kadokura T, Nakazato A (2011) Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4. Appl Environ Microbiol 77:6470–6475CrossRefPubMedPubMedCentralGoogle Scholar
  23. Petitdemange E, Fond O, Caillet F, Petitdemange H, Gay R (1983) A novel one step process for cellulose fermentation using mesophilic cellulolytic and glycolytic clostridia. Biotechnol Lett 5(2):119–124CrossRefGoogle Scholar
  24. Richter H, Molitor B, Diender M, Sousa DZ, Angenent LT (2016) A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction. Front Microbiol 7:1773CrossRefPubMedPubMedCentralGoogle Scholar
  25. Saini M, Chen MH, Chiang C, Chao YP (2015) Potential production platform of n-butanol in Escherichia coli. Metab Eng 27:76–82CrossRefPubMedGoogle Scholar
  26. Saini M, Chiang CJ, Li SY, Chao YP (2016) Production of biobutanol from cellulose hydrolysate by the Escherichia coli coculture system. FEMS Microbiol Lett 363(4):fnw008CrossRefPubMedGoogle Scholar
  27. Sleat R, Mah R, Robinson R (1984) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl Environ Microbiol 48:88–93PubMedPubMedCentralGoogle Scholar
  28. Sohail M, Hahzad S, Ahmed A, Khan SA (2005) A survey of amylolytic bacteria and fungi from native environmental samples. Pakistan J Bot 37(1):155–161Google Scholar
  29. Song H, Ding MZ, Jia XQ, Ma Q, Yuan YJ (2014) Synthetic microbial consortia: from systematic analysis to construction and applications. Chem Soc Rev 43(20):6954–6981CrossRefPubMedGoogle Scholar
  30. Tran HTM, Cheirsilp B, Hodgson B, Umsakul K (2010) Potential use of Bacillus subtilis, in a co-culture with Clostridium butylicum, for acetone–butanol–ethanol production from cassava starch. Biochem Eng J 48(2):260–267CrossRefGoogle Scholar
  31. Tran HTM, Cheirsilp B, Umsakul K, Bourtoom T (2011) Response surface optimisation for acetone-butanol-ethanol production from cassava starch by co-culture of Clostridium butylicum and Bacillus subtilis. Maejo Int. J Sci Technol 5(3):374–389Google Scholar
  32. Wen ZQ, Wu MB, Lin YJ, Yang LR, Lin JP, Cen PL (2014a) Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Factories 13(1):92CrossRefGoogle Scholar
  33. Wen ZQ, Wu MB, Lin YJ, Yang LR, Lin JP, Cen PL (2014b) A novel strategy for sequential co-culture of Clostridium thermocellum, and Clostridium beijerinckii, to produce solvents from alkali extracted corn cobs. Process Biochem 49(11):1941–1949CrossRefGoogle Scholar
  34. Xin FX, He JZ (2013) Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Bioresour Technol 135:309–315CrossRefPubMedGoogle Scholar
  35. Xin FX, Wu YR, He JZ (2014) Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol 80(15):4771–4778CrossRefPubMedPubMedCentralGoogle Scholar
  36. Xin FX, Wang C, Dong WL, Zhang WM, Wu H, Ma JF, Jiang M (2016) Comprehensive investigations of biobutanol production by a non-acetone and 1,3-propanediol generating Clostridium, strain from glycerol and polysaccharides. Biotechnol Biofuels 9(1):220CrossRefPubMedPubMedCentralGoogle Scholar
  37. Xin FX, Chen TP, Jiang YJ, Dong WL, Zhang WM, Zhang M, Wu H, Ma JF, Jiang M (2017) Strategies for improved isopropanol-butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels. 10(1):118CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yang X, Xu M, Yang ST (2015) Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metab Eng 32:39–48CrossRefPubMedGoogle Scholar
  39. Zhu Y, Wu Z, Yang ST (2002) Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochem 38(5):657–666CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yujia Jiang
    • 1
  • Ting Zhang
    • 1
  • Jiasheng Lu
    • 1
  • Peter Dürre
    • 3
  • Wenming Zhang
    • 1
    • 2
  • Weiliang Dong
    • 1
    • 2
  • Jie Zhou
    • 1
    • 2
  • Min Jiang
    • 1
    • 2
  • Fengxue Xin
    • 1
    • 2
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingPeople’s Republic of China
  3. 3.Institute of Microbiology and BiotechnologyUniversity of UlmUlmGermany

Personalised recommendations