Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production

  • Xili Liang
  • Chao Sun
  • Bosheng Chen
  • Kaiqian Du
  • Ting Yu
  • Vijitra Luang-In
  • Xingmeng Lu
  • Yongqi Shao
Environmental biotechnology

Abstract

Insects constitute the most abundant and diverse animal class and act as hosts to an extraordinary variety of symbiotic microorganisms. These microbes living inside the insects play critical roles in host biology and are also valuable bioresources. Enterococcus mundtii EMB156, isolated from the larval gut (gut pH >10) of the model organism Bombyx mori (Lepidoptera: Bombycidae), efficiently produces lactic acid, an important metabolite for industrial production of bioplastic materials. E. mundtii EMB156 grows well under alkaline conditions and stably converts various carbon sources into lactic acid, offering advantages in downstream fermentative processes. High-yield lactic acid production can be achieved by the strain EMB156 from renewable biomass substrates under alkaline pretreatments. Single-molecule real-time (SMRT) sequencing technology revealed its 3.01 Mbp whole genome sequence. A total of 2956 protein-coding sequences, 65 tRNA genes, and 6 rRNA operons were predicted in the EMB156 chromosome. Remarkable genomic features responsible for lactic acid fermentation included key enzymes involved in the pentose phosphate (PP)/glycolytic pathway, and an alpha amylase and xylose isomerase were characterized in EMB156. This genomic information coincides with the phenotype of E. mundtii EMB156, reflecting its metabolic flexibility in efficient lactate fermentation, and established a foundation for future biotechnological application. Interestingly, enzyme activities of amylase were quite stable in high-pH broths, indicating a possible mechanism for strong EMB156 growth in an alkaline environment, thereby facilitating lactic acid production. Together, these findings implied that valuable lactic acid-producing bacteria can be discovered efficiently by screening under the extremely alkaline conditions, as exemplified by gut microbial symbionts of Lepidoptera insects.

Keywords

Bombyx mori Gut symbiont Enterococcus mundtii Lactic acid Bioplastic Complete genome sequence 

Notes

Acknowledgements

We thank Peter Humphrey for critical read of the manuscript and editorial assistance.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals (except invertebrates, which are exempt from ethical concerns) performed by any of the authors.

Supplementary material

253_2018_8953_MOESM1_ESM.pdf (159 kb)
ESM 1 (PDF 158 kb)

References

  1. Abdel-Rahman MA, Tashiro Y, Zendo T, Hanada K, Shibata K, Sonomoto K (2011a) Efficient homofermentative L-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl Environ Microbiol 77(5):1892–1895.  https://doi.org/10.1128/AEM.02076-10 CrossRefPubMedGoogle Scholar
  2. Abdel-Rahman MA, Tashiro Y, Zendo T, Shibata K, Sonomoto K (2011b) Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid. Appl Microbiol Biotechnol 89(4):1039–1049.  https://doi.org/10.1007/s00253-010-2986-4 CrossRefPubMedGoogle Scholar
  3. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31(6):877–902.  https://doi.org/10.1016/j.biotechadv.2013.04.002 CrossRefPubMedGoogle Scholar
  4. Abdel-Rahman MA, Tashiro Y, Zendo T, Sakai K, Sonomoto K (2015) Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose. FEMS Microbiol Lett 362(2):1–7.  https://doi.org/10.1093/femsle/fnu030 CrossRefPubMedGoogle Scholar
  5. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  6. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29.  https://doi.org/10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28(1):45–48.  https://doi.org/10.1093/nar/28.1.45 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33(6):623–630.  https://doi.org/10.1038/nbt.3238 CrossRefPubMedGoogle Scholar
  10. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen L (2017) Complete genome sequence of Bacillus velezensis LM2303, a biocontrol strain isolated from the dung of wild yak inhabited Qinghai-Tibet plateau. J Biotechnol 251:124–127.  https://doi.org/10.1016/j.jbiotec.2017.04.034 CrossRefPubMedGoogle Scholar
  12. Chen B, Sun C, Liang X, Lu X, Gao Q, Alonso-Pernas P, Teh BS, Novoselov AL, Boland W, Shao Y (2016a) Draft genome sequence of Enterococcus mundtii SL 16, an indigenous gut bacterium of the polyphagous Pest Spodoptera littoralis. Front Microbiol 7:1676.  https://doi.org/10.3389/fmicb.2016.01676 PubMedPubMedCentralGoogle Scholar
  13. Chen L, Zheng D, Liu B, Yang J, Jin Q (2016b) VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res 44(D1):D694–D697.  https://doi.org/10.1093/nar/gkv1239 CrossRefPubMedGoogle Scholar
  14. Dow JA (1992) pH gradients in Lepidopteran midgut. J Exp Biol 172(Pt 1):355–375PubMedGoogle Scholar
  15. Eichinger V, Nussbaumer T, Platzer A, Jehl MA, Arnold R, Rattei T (2016) EffectiveDB—updates and novel features for a better annotation of bacterial secreted proteins and type III, IV, VI secretion systems. Nucleic Acids Res 44(D1):D669–D674.  https://doi.org/10.1093/nar/gkv1269 CrossRefPubMedGoogle Scholar
  16. Fei C, Lu XM, Qian YH, Zhang HY, Mahmood Q (2006) Identification of Enterococcus sp from midgut of silkworm based on biochemical and 16S rDNA sequencing analysis. Ann Microbiol 56(3):201–205CrossRefGoogle Scholar
  17. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57.  https://doi.org/10.1093/nar/gkm360 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hsiao W, Wan I, Jones SJ, Brinkman FS (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19(3):418–420CrossRefPubMedGoogle Scholar
  19. Hujanen M, Linko YY (1996) Effect of temperature and various nitrogen sources on L(+) lactic acid production by Lactobacillus casei. Appl Microbiol Biot 45(3):307–313CrossRefGoogle Scholar
  20. International Silkworm Genome C (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38(12):1036–1045.  https://doi.org/10.1016/j.ibmb.2008.11.004 CrossRefGoogle Scholar
  21. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205.  https://doi.org/10.1093/nar/gkt1076 CrossRefPubMedGoogle Scholar
  22. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48.  https://doi.org/10.1016/j.biortech.2015.08.085 CrossRefPubMedGoogle Scholar
  23. Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110–120.  https://doi.org/10.1016/j.mib.2014.11.014 CrossRefPubMedGoogle Scholar
  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  25. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108.  https://doi.org/10.1093/nar/gkm160 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li WZ, Jaroszewski L, Godzik A (2002) Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 18(1):77–82.  https://doi.org/10.1093/bioinformatics/18.1.77 CrossRefPubMedGoogle Scholar
  27. Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37(Database):D443–D447.  https://doi.org/10.1093/nar/gkn656 CrossRefPubMedGoogle Scholar
  28. Liu H, Chen B, Hu S, Liang X, Lu X, Shao Y (2016) Quantitative proteomic analysis of germination of Nosema bombycis spores under extremely alkaline conditions. Front Microbiol 7:1459.  https://doi.org/10.3389/fmicb.2016.01459 PubMedPubMedCentralGoogle Scholar
  29. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(Database issue):D490–D495.  https://doi.org/10.1093/nar/gkt1178 CrossRefPubMedGoogle Scholar
  30. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964CrossRefPubMedPubMedCentralGoogle Scholar
  31. Manero A, Blanch AR (1999) Identification of Enterococcus spp. with a biochemical key. Appl Environ Microbiol 65(10):4425–4430PubMedPubMedCentralGoogle Scholar
  32. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39(Web Server issue):W339–W346.  https://doi.org/10.1093/nar/gkr466 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428.  https://doi.org/10.1021/ac60147a030 CrossRefGoogle Scholar
  34. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, Finn RD (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43(Database issue):D130–D137.  https://doi.org/10.1093/nar/gku1063 CrossRefPubMedGoogle Scholar
  35. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786.  https://doi.org/10.1038/nmeth.1701 CrossRefPubMedGoogle Scholar
  36. Pidot SJ, Coyne S, Kloss F, Hertweck C (2014) Antibiotics from neglected bacterial sources. Int J Med Microbiol: IJMM 304(1):14–22.  https://doi.org/10.1016/j.ijmm.2013.08.011 CrossRefPubMedGoogle Scholar
  37. Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11(6):217–218CrossRefPubMedGoogle Scholar
  38. Pundir S, Martin MJ, O'Donovan C (2017) UniProt protein knowledgebase. Methods Mol Biol 1558:41–55.  https://doi.org/10.1007/978-1-4939-6783-4_2 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Saha S, Bridges S, Magbanua ZV, Peterson DG (2008) Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res 36(7):2284–2294.  https://doi.org/10.1093/nar/gkn064 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Saier MH Jr, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The transporter classification database (TCDB): recent advances. Nucleic Acids Res 44(D1):D372–D379.  https://doi.org/10.1093/nar/gkv1103 CrossRefPubMedGoogle Scholar
  41. Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M (2014) Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc Biol Sci 281(1796):20141838.  https://doi.org/10.1098/rspb.2014.1838 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D (2011) Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci U S A 108(5):1955–1960.  https://doi.org/10.1073/pnas.1008441108 CrossRefPubMedPubMedCentralGoogle Scholar
  43. See-Too WS, Chua KO, Lim YL, Chen JW, Convey P, Mohd Mohidin TB, Yin WF, Chan KG (2017) Complete genome sequence of Planococcus donghaensis JH1T, a pectin-degrading bacterium. J Biotechnol 252:11–14.  https://doi.org/10.1016/j.jbiotec.2017.05.005 CrossRefPubMedGoogle Scholar
  44. Shao Y, Arias-Cordero EM, Boland W (2013) Identification of metabolically active bacteria in the gut of the generalist Spodoptera littoralis via DNA stable isotope probing using 13C-glucose. J Vis Exp: JoVE 81:e50734.  https://doi.org/10.3791/50734 Google Scholar
  45. Shao Y, Chen B, Sun C, Ishida K, Hertweck C, Boland W (2017) Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chem Biol 24(1):66–75.  https://doi.org/10.1016/j.chembiol.2016.11.015 CrossRefPubMedGoogle Scholar
  46. Shi W, Xie S, Chen X, Sun S, Zhou X, Liu L, Gao P, Kyrpides NC, No EG, Yuan JS (2013) Comparative genomic analysis of the microbiome [corrected] of herbivorous insects reveals eco-environmental adaptations: biotechnology applications. PLoS Genet 9(1):e1003131.  https://doi.org/10.1371/journal.pgen.1003131 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Shiwa Y, Yanase H, Hirose Y, Satomi S, Araya-Kojima T, Watanabe S, Zendo T, Chibazakura T, Shimizu-Kadota M, Yoshikawa H, Sonomoto K (2014) Complete genome sequence of Enterococcus mundtii QU 25, an efficient L-(+)-lactic acid-producing bacterium. DNA Res 21(4):369–377.  https://doi.org/10.1093/dnares/dsu003 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sun Z, Kumar D, Cao G, Zhu L, Liu B, Zhu M, Liang Z, Kuang S, Chen F, Feng Y, Hu X, Xue R, Gong C (2017) Effects of transient high temperature treatment on the intestinal flora of the silkworm Bombyx mori. Sci Rep 7(1):3349.  https://doi.org/10.1038/s41598-017-03565-4 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41.  https://doi.org/10.1186/1471-2105-4-41 CrossRefGoogle Scholar
  50. Unban K, Kanpiengjai A, Takata G, Uechi K, Lee WC, Khanongnuch C (2017) Amylolytic enzymes acquired from L-lactic acid producing Enterococcus faecium K-1 and improvement of direct lactic acid production from cassava starch. Appl Biochem Biotechnol 183(1):155–170.  https://doi.org/10.1007/s12010-017-2436-1 CrossRefPubMedGoogle Scholar
  51. Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack KE (2015) The pathogen-host interactions database (PHI-base): additions and future developments. Nucleic Acids Res 43(Database issue):D645–D655.  https://doi.org/10.1093/nar/gku1165 CrossRefPubMedGoogle Scholar
  52. Yokaryo H, Tokiwa Y (2014) Isolation of alkaliphilic bacteria for production of high optically pure L-(+)-lactic acid. J Gen Appl Microbiol 60(6):270–275.  https://doi.org/10.2323/jgam.60.270 CrossRefPubMedGoogle Scholar
  53. Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci U S A 114(18):4775–4780.  https://doi.org/10.1073/pnas.1701819114 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352.  https://doi.org/10.1093/nar/gkr485 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xili Liang
    • 1
  • Chao Sun
    • 2
  • Bosheng Chen
    • 1
  • Kaiqian Du
    • 1
  • Ting Yu
    • 1
  • Vijitra Luang-In
    • 3
  • Xingmeng Lu
    • 1
  • Yongqi Shao
    • 1
    • 4
  1. 1.Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
  2. 2.Analysis Center of Agrobiology and Environmental SciencesZhejiang UniversityHangzhouChina
  3. 3.Natural Antioxidant Research Unit, Department of Biotechnology, Faculty of TechnologyMahasarakham UniversityKhamriang, KantarawichaiThailand
  4. 4.Key Laboratory for Molecular Animal Nutrition, Ministry of EducationHangzhouChina

Personalised recommendations