A key residue for the substrate affinity enhancement of a thermophilic endo-polygalacturonase revealed by computational design

Biotechnologically relevant enzymes and proteins
  • 38 Downloads

Abstract

Protein engineering has been a research hotspot to improve the catalytic efficiency of industrially important enzymes. In the present study, a novel computational strategy was developed to in silico screen mutants with enhanced binding interaction between enzyme and substrate as well as catalytic efficiency. Through homology modeling and molecular dynamics (MD) simulation, four key residues related to substrate binding were identified in the endo-polygalacturonase BiPG28A from Bispora sp. MEY-1. Further analyses of the conformation, hydrogen bond interactions, and binding free energy revealed that lysine at position 129 (subsite − 2) has the strongest affinity to substrate. Biochemical and calorimetry experiments confirmed the functional role of Lys129 in substrate binding through non-covalent interactions. The common role of Lys129 was also verified in another GH28 endo-polygalacturonase. Distinguished from other protein engineering strategies involving structure resolution and construction of certain enzymes, this computational strategy represents an insightful and efficient approach to develop a “designed” enzyme with significantly enhanced binding affinity and catalytic efficiency.

Keywords

Endo-polygalacturonase Binding affinity Computational design Molecular dynamics simulation Site-directed mutagenesis 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31571777), the China Modern Agriculture Research System (CARS-41), and the National Key Research and Development Program of China (2016YFD0501409-02).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8948_MOESM1_ESM.pdf (372 kb)
ESM 1 (PDF 371 kb)

References

  1. Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LDH, Baker SE, Magnuson J, LaBoissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–927CrossRefPubMedGoogle Scholar
  2. Bernardi RC, Cann I, Schulten K (2014) Molecular dynamics study of enhanced Man5B enzymatic activity. Biotechnol Biofuels 7:83CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bonivento D, Pontiggia D, Matteo AD, Fernandez-Recio J, Salvi G, Tsernoglou D, Cervone F, Lorenzo GD, Federici L (2008) Crystal structure of the endopolygalacturonase from the phytopathogenic fungus Colletotrichum lupini and its interaction with polygalacturonase-inhibiting proteins. Proteins 70:294–299CrossRefPubMedGoogle Scholar
  4. Cheng Z, Chen D, Lu B, Wei Y, Xian L, Li Y, Luo Z, Huang R (2016) A novel acid-stable endo-polygalacturonase from Penicillium oxalicum CZ1028: purification, characterization, and application in the beverage industry. J Microbiol Biotechnol 26:989–998CrossRefPubMedGoogle Scholar
  5. Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33:1443–1454CrossRefPubMedGoogle Scholar
  6. Comeau MA, Lafontaine DA, Abou Elela S (2016) The catalytic efficiency of yeast ribonuclease III depends on substrate specific product release rate. Nucleic Acids Res 44:7911–7921CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cui D, Zhang L, Jiang S, Yao Z, Gao B, Lin J, Yuan YA, Wei D (2015) A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H). FEBS J 282:2339–2351CrossRefPubMedGoogle Scholar
  8. Daczkowski CM, Pegan SD, Harvey SP (2015) Engineering the organophosphorus acid anhydrolase enzyme for increased catalytic efficiency and broadened stereospecificity on Russian VX. Biochemistry 54:6423–6433CrossRefPubMedGoogle Scholar
  9. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  10. Federici L, Caprari C, Mattei B, Savino C, Di Matteo A, De Lorenzo G, Cervone F, Tsernoglou D (2001) Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc Natl Acad Sci U S A 98:13425–13430CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hirose N, Kishida M, Kawasaki H, Sakai T (1999) Purification and characterization of an endo-polygalacturonase from a mutant of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 63:1100–1103CrossRefPubMedGoogle Scholar
  12. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29:622–655CrossRefPubMedPubMedCentralGoogle Scholar
  13. Korendovych IV, DeGrado WF (2014) Catalytic efficiency of designed catalytic proteins. Curr Opin Struct Biol 27:113–121CrossRefPubMedGoogle Scholar
  14. Li K, Meng K, Pan X, Ma R, Yang P, Huang H, Yao B, Su X (2015) Two thermophilic fungal pectinases from Neosartorya fischeri P1: gene cloning, expression, and biochemical characterization. J Mol Catal B-Enzym 118:70–78CrossRefGoogle Scholar
  15. Li Y, Wang Y, Tu T, Zhang D, Ma R, You S, Wang X, Yao B, Luo H, Xu B (2017) Two acidic, thermophilic GH28 polygalacturonases from Talaromyces leycettanus JCM 12802 with application potentials for grape juice clarification. Food Chem 237:997–1003CrossRefPubMedGoogle Scholar
  16. Luo H, Wang Y, Wang H, Yang J, Yang Y, Huang H, Yang P, Bai Y, Shi P, Fan Y, Yao B (2009) A novel highly acidic β-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl Microbiol Biotechnol 82:453–461CrossRefPubMedGoogle Scholar
  17. Luo H, Yang J, Yang P, Li J, Huang H, Shi P, Bai Y, Wang Y, Fan Y, Yao B (2010) Gene cloning and expression of a new acidic family 7 endo-β-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1. Appl Microbiol Biotechnol 85:1015–1023CrossRefPubMedGoogle Scholar
  18. Martins ES, Silva D, Leite RS, Gomes E (2007) Purification and characterization of polygalacturonase produced by thermophilic Thermoascus aurantiacus CBMAI-756 in submerged fermentation. Antonie Van Leeuwenhoek 91:291–299CrossRefPubMedGoogle Scholar
  19. Mathew A, Eldo AN, Molly A (2008) Optimization of culture conditions for the production of thermostable polygalacturonase by Penicillium SPC-F 20. J Ind Microbiol Biotechnol 35:1001–1005CrossRefPubMedGoogle Scholar
  20. Matsui I, Ishikawa K, Matsui E, Miyairi S, Fukui S, Honda K (1991) Subsite structure of Saccharomycopsis α-amylase secreted from Saccharomyces cerevisiae. J Biochem 109:566–569Google Scholar
  21. Miyairi K, Matsue T, Kagawa O, Kutsuzawa T, Okuno T (1994) Purification and characterization of an endopolygalacturonase from Physalospora piricola. Biosci Biotechnol Biochem 58:1909–1910CrossRefGoogle Scholar
  22. Parashar D, Satyanarayana T (2016) A chimeric α-amylase engineered from Bacillus acidicola and Geobacillus thermoleovorans with improved thermostability and catalytic efficiency. J Ind Microbiol Biotechnol 43:473–484CrossRefPubMedGoogle Scholar
  23. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  24. Schnitzhofer W, Weber HJ, Vršanská M, Biely P, Cavaco-Paulo A, Guebitz G (2007) Purification and mechanistic characterisation of two polygalacturonases from Sclerotium rolfsii. Enzyme Microb Tech 40:1739–1747CrossRefGoogle Scholar
  25. Shimizu T, Nakatsu T, Miyairi K, Okuno T, Kato H (2002) Active-site architecture of endopolygalacturonase I from Stereum purpureum revealed by crystal structures in native and ligand-bound forms at atomic resolution. Biochemistry 41:6651–6659CrossRefPubMedGoogle Scholar
  26. Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501:212–216CrossRefPubMedPubMedCentralGoogle Scholar
  27. Tounsia H, Sassia AH, Romdhanea ZB, Lajnefa M, Dupuyb JW, Lapaillerieb D, Lomenechb AM, Bonneub M, Gargouria A, Hadj-Taieb N (2016) Catalytic properties of a highly thermoactive polygalacturonase from the mesophilic fungus Penicillium occitanis and use in juice clarification. J Mol Catal B-Enzym 127:56–66CrossRefGoogle Scholar
  28. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentralGoogle Scholar
  29. Tu T, Meng K, Bai Y, Shi P, Luo H, Wang Y, Yang P, Zhang Y, Zhang W, Yao B (2013) High-yield production of a low-temperature-active polygalacturonase for papaya juice clarification. Food Chem 141:2974–2981CrossRefPubMedGoogle Scholar
  30. Tu T, Meng K, Huang H, Luo H, Bai Y, Ma R, Su X, Shi P, Yang P, Wang Y, Yao B (2014) Molecular characterization of a thermophilic endo-polygalacturonase from Thielavia arenaria XZ7 with high catalytic efficiency and application potential in the food and feed industries. J Agric Food Chem 62:12686–12694CrossRefPubMedGoogle Scholar
  31. Tu T, Meng K, Luo H, Turunen O, Zhang L, Cheng Y, Su X, Ma R, Shi P, Wang Y, Yang P, Yao B (2015) New insights into the role of T3 loop in determining catalytic efficiency of GH28 endo-polygalacturonases. PLoS One 10:e0135413CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tu T, Li Y, Su X, Meng K, Ma R, Wang Y, Yao B, Lin Z, Luo H (2016a) Probing the role of cation-π interaction in the thermotolerance and catalytic performance of endo-polygalacturonases. Sci Rep 6:38413CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tu T, Pan X, Meng K, Luo H, Ma R, Wang Y, Yao B (2016b) Substitution of a non-active-site residue located on the T3 loop increased the catalytic efficiency of endo-polygalacturonases. Process Biochem 51:1230–1238CrossRefGoogle Scholar
  34. van Santen Y, Benen JA, Schröter KH, Kalk KH, Armand S, Visser J, Dijkstra BW (1999) 1.68-Å crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J Biol Chem 274:30474–30480Google Scholar
  35. Velázquez-Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E (2004) Isothermal titration calorimetry. Curr Protoc Cell Biol 17(8):1–17.8.24Google Scholar
  36. Wang H, Luo H, Li J, Bai Y, Huang H, Shi P, Fan Y, Yao B (2010) An α-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with β-mannanase. Bioresour Technol 101:8376–8382CrossRefPubMedGoogle Scholar
  37. Wang Z, Ye S, Li J, Zheng B, Bao M, Ning G (2011) Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnol 11:109CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wang J, Zhang Y, Qin X, Gao L, Han B, Zhang D, Li J, Huang H, Zhang W (2017) Efficient expression of an acidic endo-polygalacturonase from Aspergillus niger and its application in juice production. J Agric Food Chem 65:2730–2736CrossRefPubMedGoogle Scholar
  39. Wickstrom L, Okur A, Simmerling C (2009) Evaluating the performance of the ff99SB force field based on NMR scalar coupling data. Biophys J 97:853–856CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137CrossRefPubMedGoogle Scholar
  41. Yang J, Luo H, Li J, Wang K, Cheng H, Bai Y, Yuan T, Fan Y, Yao B (2011) Cloning, expression and characterization of an acidic endo-polygalacturonase from Bispora sp. MEY-1 and its potential application in juice clarification. Process Biochem 46:272–277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research InstituteChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations